For a series RLC circuit, determine:
a) The equation for the oscillations given by the charge as a function of time q(t);
b) The solution for the equation of the circuit, in the case of subcritical damping, and the angular
frequency of the oscillations.
Solution
a) Applying
Kirchhoff's Second Law (Figure 1)
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\sum_{i=1}^{n}V_{i}=0} \tag{I}
\end{gather}
\]
Between points
A and
C, we have an
emf in the inductor given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{V_{L}=L\frac{di}{dt}} \tag{II}
\end{gather}
\]
between points
B and
D, we have the
emf on the capacitor given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{V_{C}=\frac{q}{C}} \tag{III}
\end{gather}
\]
between points
A and
B, we have the
emf on the resistor given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{V_{R}=Ri} \tag{IV}
\end{gather}
\]
substituting expressions (II), (III), and (IV) into expression (I)
\[
\begin{gather}
V_{L}+V_{R}+V_{C}=0\\[5pt]
L\frac{di}{dt}+Ri+\frac{q}{C}=0
\end{gather}
\]
the current is the rate of change in charge relative to the time
\[
\begin{gather}
\bbox[#99CCFF,10px]
{i=\frac{dq}{dt}} \tag{V}
\end{gather}
\]
\[
\begin{gather}
L\frac{d}{dt}\left(\frac{dq}{dt}\right)+R\frac{dq}{dt}+\frac{q}{C}=0\\[5pt]
L\frac{d^{2}q}{dt^{2}}+R\frac{dq}{dt}+\frac{q}{C}=0
\end{gather}
\]
this is a
Second-Order Homogeneous Ordinary Differential Equation. Dividing the equation by the
inductance
L
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{\frac{d^{2}q}{dt^{2}}+\frac{R}{L}\frac{dq}{dt}+\frac{1}{LC}q=0}
\end{gather}
\]
b) In the equation of the previous item, we will make the following definitions
\[
\begin{gather}
2\gamma \equiv \frac{R}{L} \tag{VI}\\[10pt]
\omega ^{2}\equiv\frac{1}{LC} \tag{VII}
\end{gather}
\]
\[
\begin{gather}
\frac{d^{2}q}{dt^{2}}+2\gamma \frac{dq}{dt}+\omega ^{2}q=0 \tag{VIII}
\end{gather}
\]
The solution to this type of equation is found substituting
\[
\begin{array}{l}
q=\operatorname{e}^{\lambda t}\\[5pt]
\dfrac{dq}{dt}=\lambda\operatorname{e}^{\;\lambda t}\\[5pt]
\dfrac{d^{2}q}{dt^{2}}=\lambda^{2}\operatorname{e}^{\lambda t}
\end{array}
\]
substituting these values in the equation of item (a)
\[
\begin{gather}
\lambda ^{2}\operatorname{e}^{\;\lambda t}+2\gamma\lambda \operatorname{e}^{\lambda t}+\omega^{2}\operatorname{e}^{\lambda t}=0\\[5pt]
\operatorname{e}^{\lambda t}\left(\lambda ^{2}+2\gamma \lambda +\omega^{2}\right)=0\\[5pt]
\lambda^{2}+2\gamma \lambda +\omega^{2}=\frac{0}{\operatorname{e}^{\lambda t}}\\[5pt]
\lambda^{2}+2\gamma \lambda +\omega^{2}=0
\end{gather}
\]
this is the
Characteristic Equation that has as a solution
\[
\begin{array}{l}
\Delta=b^{2}-4ac=\left(2\gamma \right)^{2}-4.1.\omega^{2}=4\gamma ^{2}-4\omega ^{2}=4\left(\gamma^{2}-\omega^{2}\right)\\[5pt]
\lambda_{1}=\dfrac{-b+\sqrt{\Delta\;}}{2a}=\dfrac{-2\gamma +\sqrt{4\left(\gamma^{2}-\omega^{2}\right)\;}}{2.1}=-{\dfrac{2\gamma }{2}}+\dfrac{2\sqrt{\gamma^{2}-\omega^{2}\;}}{2}=-\gamma +\sqrt{\gamma^{2}-\omega^{2}\;}\\[5pt]
\lambda_{2}=\dfrac{-b-\sqrt{\Delta\;}}{2a}=\dfrac{-2\gamma-\sqrt{4\left(\gamma^{2}-\omega^{2}\right)\;}}{2.1}=-{\dfrac{2\gamma}{2}}-\dfrac{2\sqrt{\gamma^{2}-\omega^{2}\;}}{2}=-\gamma -\sqrt{\gamma^{2}-\omega ^{2}\;}
\end{array}
\]
For the circuit to oscillate critically damped, we must have ω
2>γ
2,
the term in the square root will be
\[
\begin{gather}
\sqrt{-1.\left(\omega^{2}-\gamma^{2}\right)}=\sqrt{-1}.\sqrt{\left(\omega ^{2}-\gamma^{2}\right)}=i\sqrt{\left(\omega ^{2}-\gamma ^{2}\right)}
\end{gather}
\]
where
\( i=\sqrt{-1} \)
The solution of expression (VIII) is written as
\[
\begin{gather}
q=C_{1}\operatorname{e}^{\lambda_{1}t}+C_{2}\operatorname{e}^{\lambda_{2}t}\\[5pt]
q=C_{1}\operatorname{e}^{\left(-\gamma +i\sqrt{\omega^{2}-\gamma^{2}\;}\right)t}+C_{2}\operatorname{e}^{\left(-\gamma-i\sqrt{\omega^{2}-\gamma^{2}\;}\right)t}\\[5pt]
q=C_{1}\operatorname{e}^{\left(-\gamma t+i\sqrt{\omega^{2}-\gamma^{2}\;}\;t\right)}+C_{2}\operatorname{e}^{\left(-\gamma t-i\sqrt{\omega^{2}-\gamma ^{2}\;}\;t\right)}\\[5pt]
q=C_{1}\operatorname{e}^{-\gamma t}\operatorname{e}^{\left(i\sqrt{\omega^{2}-\gamma^{2}\;}\;t\right)}+C_{2}\operatorname{e}^{-\gamma t}\operatorname{e}^{\left(-i\sqrt{\omega ^{2}-\gamma^{2}\;}\;t\right)}\\[5pt]
q=\operatorname{e}^{-\gamma t}\left[C_{1}\operatorname{e}^{\left(i\sqrt{\omega ^{2}-\gamma^{2}\;}\;t\right)}+C_{2}\operatorname{e}^{\left(-i\sqrt{\omega^{2}-\gamma^{2}\;}\;t\right)}\right]
\end{gather}
\]
where
C1 and
C2 are constants of integration, using
Euler's Formula
\( \operatorname{e}^{i\theta}=\cos \theta +i \operatorname{sen}\theta \)
\[
\begin{split}
q=&\operatorname{e}^{-\gamma t}\left[C_{1}\operatorname{e}^{\left(i\sqrt{\omega^{2}-\gamma^{2}\;}\;t\right)}+C_{2}\operatorname{e}^{\left(-i\sqrt{\omega^{2}-\gamma^{2}\;}\;t\right)}\right]\\[8pt]
q=&\operatorname{e}^{-\gamma t}\left\{C_{1}\left[\cos \left(\sqrt{\omega^{2}-\gamma^{2}\;}\;t\right)+i\operatorname{sen}\left(\sqrt{\omega ^{2}-\gamma^{2}\;}\;t\right)\right]\right.+\\
&\left.+C_{2}\left[\cos\left(\sqrt{\omega ^{2}-\gamma^{2}\;}\;t\right)-i\operatorname{sen}\left(\sqrt{\omega ^{2}-\gamma^{2}\;}\;t\right)\right]\right\}\\[8pt]
q=&\operatorname{e}^{-\gamma t}\left\{C_{1}\cos \left(\sqrt{\omega ^{2}-\gamma^{2}\;}\;t\right)+iC_{1}\operatorname{sen}\left(\sqrt{\omega^{2}-\gamma ^{2}\;}\;t\right)\right.+\\
&\left.+C_{2}\cos\left(\sqrt{\omega ^{2}-\gamma^{2}\;}\;t\right)-iC_{2}\operatorname{sen}\left(\sqrt{\omega^{2}-\gamma ^{2}\;}\;t\right)\right\}\\[8pt]
q=&\operatorname{e}^{-\gamma t}\left\{\left(C_{1}+C_{2}\right)\cos \left(\sqrt{\omega^{2}-\gamma^{2}\;}\;t\right)+i\left(C_{1}-C_{2}\right)\operatorname{sen}\left(\sqrt{\omega^{2}-\gamma^{2}\;}\;t\right)\right\}
\end{split}
\]
defining two new constants α and β in terms of
C1 and
C2
\[
\begin{gather}
\alpha \equiv C_{1}+C_{2} \quad \text{and} \quad \beta \equiv \text{i}(C_{1}-C_{2})
\end{gather}
\]
\[
\begin{gather}
q=\operatorname{e}^{-\gamma t}\left\{\alpha \;\cos \left(\sqrt{\omega^{2}-\gamma ^{2}\;}\;t\right)+\beta\;\operatorname{sen}\left(\sqrt{\omega^{2}-\gamma^{2}\;}\;t\right)\right\}
\end{gather}
\]
multiplying and dividing this expression by
\( \sqrt{\alpha ^{2}+\beta ^{2}\;} \)
\[
\begin{gather}
q=\operatorname{e}^{-\gamma t}\left\{\alpha \;\cos\left(\sqrt{\omega ^{2}-\gamma ^{2}\;}\;t\right)+\beta\;\operatorname{sen}\left(\sqrt{\omega ^{2}-\gamma^{2}\;}\;t\right)\right\}\frac{\sqrt{\alpha ^{2}+\beta^{2}\;}}{\sqrt{\alpha ^{2}+\beta ^{2}\;}}\\[5pt]
q=\sqrt{\alpha^{2}+\beta ^{2}\;}\;\operatorname{e}^{-\gamma t}\left\{\frac{\alpha}{\sqrt{\alpha ^{2}+\beta ^{2}\;}}\;\cos \left(\sqrt{\omega ^{2}-\gamma^{2}\;}\;t\right)+\frac{\beta }{\sqrt{\alpha^{2}+\beta^{2}\;}}\;\operatorname{sen}\left(\sqrt{\omega^{2}-\gamma^{2}\;}\;t\right)\right\}
\end{gather}
\]
setting
\[
\begin{array}{l}
A\equiv \sqrt{\alpha ^{2}+\beta ^{2}\;}\\[5pt]
\cos \varphi \equiv \dfrac{\alpha }{\sqrt{\alpha ^{2}+\beta ^{2}\;}}\\[5pt]
\operatorname{sen}\varphi \equiv \dfrac{\beta }{\sqrt{\alpha ^{2}+\beta^{2}\;}}
\end{array}
\]
\[
\begin{gather}
q=A\;\operatorname{e}^{-\gamma t}\left\{\cos \varphi \;\cos\left(\sqrt{\omega^{2}-\gamma^{2}\;}\;t\right)+\operatorname{sen}\varphi\;\operatorname{sen}\left(\sqrt{\omega ^{2}-\gamma^{2}\;}\;t\right)\right\}
\end{gather}
\]
From the trigonometric identity
\( \cos (a-b)=\cos a\cos b+\operatorname{sen}a\operatorname{sen}b \)
\[
\begin{gather}
q=A\;\operatorname{e}^{-\gamma t}\;\cos \left(\sqrt{\omega ^{2}-\gamma^{2}\;}\;t-\varphi \right)
\end{gather}
\]
the angular frequency ω
0 is given by
\[
\begin{gather}
\omega_{0}=\sqrt{\omega ^{2}-\gamma^{2}\;}
\end{gather}
\]
using the definitions made in (VI) and (VII) for ω
2 and γ
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{\omega_{0}=\sqrt{\frac{1}{LC}-\left(\frac{R}{2L}\right)^{2}\;}}
\end{gather}
\]
The solution to the equation of charge is written as
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{q(t)=A\;\operatorname{e}^{-\gamma t}\;\cos \left(\omega_{0}t-\varphi\right)}
\end{gather}
\]
where
A and φ are constants determined by the initial conditions of the problem.