Solved Problem on RLC Circuits
advertisement   



For a series RLC circuit, determine:
a) The equation for the oscillations given by the charge as a function of time q(t);
b) The solution for the equation of the circuit, in the case of subcritical damping, and the angular frequency of the oscillations.


Solution

a) Applying Kirchhoff's Second Law (Figure 1)
\[ \begin{gather} \bbox[#99CCFF,10px] {\sum_{i=1}^{n}V_{i}=0} \tag{I} \end{gather} \]
Figure 1

Between points A and C, we have an emf in the inductor given by
\[ \begin{gather} \bbox[#99CCFF,10px] {V_{L}=L\frac{di}{dt}} \tag{II} \end{gather} \]
between points B and D, we have the emf on the capacitor given by
\[ \begin{gather} \bbox[#99CCFF,10px] {V_{C}=\frac{q}{C}} \tag{III} \end{gather} \]
between points A and B, we have the emf on the resistor given by
\[ \begin{gather} \bbox[#99CCFF,10px] {V_{R}=Ri} \tag{IV} \end{gather} \]
substituting expressions (II), (III), and (IV) into expression (I)
\[ \begin{gather} V_{L}+V_{R}+V_{C}=0\\[5pt] L\frac{di}{dt}+Ri+\frac{q}{C}=0 \end{gather} \]
the current is the rate of change in charge relative to the time
\[ \begin{gather} \bbox[#99CCFF,10px] {i=\frac{dq}{dt}} \tag{V} \end{gather} \]
\[ \begin{gather} L\frac{d}{dt}\left(\frac{dq}{dt}\right)+R\frac{dq}{dt}+\frac{q}{C}=0\\[5pt] L\frac{d^{2}q}{dt^{2}}+R\frac{dq}{dt}+\frac{q}{C}=0 \end{gather} \]
this is a Second-Order Homogeneous Ordinary Differential Equation. Dividing the equation by the inductance L
\[ \begin{gather} \bbox[#FFCCCC,10px] {\frac{d^{2}q}{dt^{2}}+\frac{R}{L}\frac{dq}{dt}+\frac{1}{LC}q=0} \end{gather} \]

b) In the equation of the previous item, we will make the following definitions
\[ \begin{gather} 2\gamma \equiv \frac{R}{L} \tag{VI}\\[10pt] \omega ^{2}\equiv\frac{1}{LC} \tag{VII} \end{gather} \]
\[ \begin{gather} \frac{d^{2}q}{dt^{2}}+2\gamma \frac{dq}{dt}+\omega ^{2}q=0 \tag{VIII} \end{gather} \]
The solution to this type of equation is found substituting
\[ \begin{array}{l} q=\operatorname{e}^{\lambda t}\\[5pt] \dfrac{dq}{dt}=\lambda\operatorname{e}^{\;\lambda t}\\[5pt] \dfrac{d^{2}q}{dt^{2}}=\lambda^{2}\operatorname{e}^{\lambda t} \end{array} \]
substituting these values ​​in the equation of item (a)
\[ \begin{gather} \lambda ^{2}\operatorname{e}^{\;\lambda t}+2\gamma\lambda \operatorname{e}^{\lambda t}+\omega^{2}\operatorname{e}^{\lambda t}=0\\[5pt] \operatorname{e}^{\lambda t}\left(\lambda ^{2}+2\gamma \lambda +\omega^{2}\right)=0\\[5pt] \lambda^{2}+2\gamma \lambda +\omega^{2}=\frac{0}{\operatorname{e}^{\lambda t}}\\[5pt] \lambda^{2}+2\gamma \lambda +\omega^{2}=0 \end{gather} \]
this is the Characteristic Equation that has as a solution
\[ \begin{array}{l} \Delta=b^{2}-4ac=\left(2\gamma \right)^{2}-4.1.\omega^{2}=4\gamma ^{2}-4\omega ^{2}=4\left(\gamma^{2}-\omega^{2}\right)\\[5pt] \lambda_{1}=\dfrac{-b+\sqrt{\Delta\;}}{2a}=\dfrac{-2\gamma +\sqrt{4\left(\gamma^{2}-\omega^{2}\right)\;}}{2.1}=-{\dfrac{2\gamma }{2}}+\dfrac{2\sqrt{\gamma^{2}-\omega^{2}\;}}{2}=-\gamma +\sqrt{\gamma^{2}-\omega^{2}\;}\\[5pt] \lambda_{2}=\dfrac{-b-\sqrt{\Delta\;}}{2a}=\dfrac{-2\gamma-\sqrt{4\left(\gamma^{2}-\omega^{2}\right)\;}}{2.1}=-{\dfrac{2\gamma}{2}}-\dfrac{2\sqrt{\gamma^{2}-\omega^{2}\;}}{2}=-\gamma -\sqrt{\gamma^{2}-\omega ^{2}\;} \end{array} \]
For the circuit to oscillate critically damped, we must have ω22, the term in the square root will be
\[ \begin{gather} \sqrt{-1.\left(\omega^{2}-\gamma^{2}\right)}=\sqrt{-1}.\sqrt{\left(\omega ^{2}-\gamma^{2}\right)}=i\sqrt{\left(\omega ^{2}-\gamma ^{2}\right)} \end{gather} \]
where   \( i=\sqrt{-1} \)
The solution of expression (VIII) is written as
\[ \begin{gather} q=C_{1}\operatorname{e}^{\lambda_{1}t}+C_{2}\operatorname{e}^{\lambda_{2}t}\\[5pt] q=C_{1}\operatorname{e}^{\left(-\gamma +i\sqrt{\omega^{2}-\gamma^{2}\;}\right)t}+C_{2}\operatorname{e}^{\left(-\gamma-i\sqrt{\omega^{2}-\gamma^{2}\;}\right)t}\\[5pt] q=C_{1}\operatorname{e}^{\left(-\gamma t+i\sqrt{\omega^{2}-\gamma^{2}\;}\;t\right)}+C_{2}\operatorname{e}^{\left(-\gamma t-i\sqrt{\omega^{2}-\gamma ^{2}\;}\;t\right)}\\[5pt] q=C_{1}\operatorname{e}^{-\gamma t}\operatorname{e}^{\left(i\sqrt{\omega^{2}-\gamma^{2}\;}\;t\right)}+C_{2}\operatorname{e}^{-\gamma t}\operatorname{e}^{\left(-i\sqrt{\omega ^{2}-\gamma^{2}\;}\;t\right)}\\[5pt] q=\operatorname{e}^{-\gamma t}\left[C_{1}\operatorname{e}^{\left(i\sqrt{\omega ^{2}-\gamma^{2}\;}\;t\right)}+C_{2}\operatorname{e}^{\left(-i\sqrt{\omega^{2}-\gamma^{2}\;}\;t\right)}\right] \end{gather} \]
where C1 and C2 are constants of integration, using Euler's Formula   \( \operatorname{e}^{i\theta}=\cos \theta +i \operatorname{sen}\theta \)
\[ \begin{split} q=&\operatorname{e}^{-\gamma t}\left[C_{1}\operatorname{e}^{\left(i\sqrt{\omega^{2}-\gamma^{2}\;}\;t\right)}+C_{2}\operatorname{e}^{\left(-i\sqrt{\omega^{2}-\gamma^{2}\;}\;t\right)}\right]\\[8pt] q=&\operatorname{e}^{-\gamma t}\left\{C_{1}\left[\cos \left(\sqrt{\omega^{2}-\gamma^{2}\;}\;t\right)+i\operatorname{sen}\left(\sqrt{\omega ^{2}-\gamma^{2}\;}\;t\right)\right]\right.+\\ &\left.+C_{2}\left[\cos\left(\sqrt{\omega ^{2}-\gamma^{2}\;}\;t\right)-i\operatorname{sen}\left(\sqrt{\omega ^{2}-\gamma^{2}\;}\;t\right)\right]\right\}\\[8pt] q=&\operatorname{e}^{-\gamma t}\left\{C_{1}\cos \left(\sqrt{\omega ^{2}-\gamma^{2}\;}\;t\right)+iC_{1}\operatorname{sen}\left(\sqrt{\omega^{2}-\gamma ^{2}\;}\;t\right)\right.+\\ &\left.+C_{2}\cos\left(\sqrt{\omega ^{2}-\gamma^{2}\;}\;t\right)-iC_{2}\operatorname{sen}\left(\sqrt{\omega^{2}-\gamma ^{2}\;}\;t\right)\right\}\\[8pt] q=&\operatorname{e}^{-\gamma t}\left\{\left(C_{1}+C_{2}\right)\cos \left(\sqrt{\omega^{2}-\gamma^{2}\;}\;t\right)+i\left(C_{1}-C_{2}\right)\operatorname{sen}\left(\sqrt{\omega^{2}-\gamma^{2}\;}\;t\right)\right\} \end{split} \]
defining two new constants α and β in terms of C1 and C2
\[ \begin{gather} \alpha \equiv C_{1}+C_{2} \quad \text{and} \quad \beta \equiv \text{i}(C_{1}-C_{2}) \end{gather} \]
\[ \begin{gather} q=\operatorname{e}^{-\gamma t}\left\{\alpha \;\cos \left(\sqrt{\omega^{2}-\gamma ^{2}\;}\;t\right)+\beta\;\operatorname{sen}\left(\sqrt{\omega^{2}-\gamma^{2}\;}\;t\right)\right\} \end{gather} \]
multiplying and dividing this expression by   \( \sqrt{\alpha ^{2}+\beta ^{2}\;} \)
\[ \begin{gather} q=\operatorname{e}^{-\gamma t}\left\{\alpha \;\cos\left(\sqrt{\omega ^{2}-\gamma ^{2}\;}\;t\right)+\beta\;\operatorname{sen}\left(\sqrt{\omega ^{2}-\gamma^{2}\;}\;t\right)\right\}\frac{\sqrt{\alpha ^{2}+\beta^{2}\;}}{\sqrt{\alpha ^{2}+\beta ^{2}\;}}\\[5pt] q=\sqrt{\alpha^{2}+\beta ^{2}\;}\;\operatorname{e}^{-\gamma t}\left\{\frac{\alpha}{\sqrt{\alpha ^{2}+\beta ^{2}\;}}\;\cos \left(\sqrt{\omega ^{2}-\gamma^{2}\;}\;t\right)+\frac{\beta }{\sqrt{\alpha^{2}+\beta^{2}\;}}\;\operatorname{sen}\left(\sqrt{\omega^{2}-\gamma^{2}\;}\;t\right)\right\} \end{gather} \]
setting
\[ \begin{array}{l} A\equiv \sqrt{\alpha ^{2}+\beta ^{2}\;}\\[5pt] \cos \varphi \equiv \dfrac{\alpha }{\sqrt{\alpha ^{2}+\beta ^{2}\;}}\\[5pt] \operatorname{sen}\varphi \equiv \dfrac{\beta }{\sqrt{\alpha ^{2}+\beta^{2}\;}} \end{array} \]
\[ \begin{gather} q=A\;\operatorname{e}^{-\gamma t}\left\{\cos \varphi \;\cos\left(\sqrt{\omega^{2}-\gamma^{2}\;}\;t\right)+\operatorname{sen}\varphi\;\operatorname{sen}\left(\sqrt{\omega ^{2}-\gamma^{2}\;}\;t\right)\right\} \end{gather} \]
From the trigonometric identity   \( \cos (a-b)=\cos a\cos b+\operatorname{sen}a\operatorname{sen}b \)
\[ \begin{gather} q=A\;\operatorname{e}^{-\gamma t}\;\cos \left(\sqrt{\omega ^{2}-\gamma^{2}\;}\;t-\varphi \right) \end{gather} \]
the angular frequency ω0 is given by
\[ \begin{gather} \omega_{0}=\sqrt{\omega ^{2}-\gamma^{2}\;} \end{gather} \]
using the definitions made in (VI) and (VII) for ω2 and γ
\[ \begin{gather} \bbox[#FFCCCC,10px] {\omega_{0}=\sqrt{\frac{1}{LC}-\left(\frac{R}{2L}\right)^{2}\;}} \end{gather} \]
The solution to the equation of charge is written as
\[ \begin{gather} \bbox[#FFCCCC,10px] {q(t)=A\;\operatorname{e}^{-\gamma t}\;\cos \left(\omega_{0}t-\varphi\right)} \end{gather} \]
where A and φ are constants determined by the initial conditions of the problem.
advertisement