Determine the magnitude of the electric field produced by a thin spherical shell, of radius
R and
electric charge
Q>0, everywhere in the space.
Problem data:
- Radius of spherical shell: R.
- Charge of the spherical shell: Q.
Problem diagram:
To determine the magnitude of the electric field everywhere in space, we must consider the points inside
the spherical shell,
r ≤
R, and points outside the spherical shell,
r >
R, (Figure 1).
We construct an internal
Gaussian Surface and another surface external to the spherical shell.
Solution
Inside the spherical shell, there are no charges, the electric field is zero
\[ \bbox[#FFCCCC,10px]
{E=0}
\]
Gauss's Law is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\oint_{A}{\mathbf{E}}.d\mathbf{A}=\frac{q}{\epsilon_{0}}} \tag{I}
\end{gather}
\]
The electric field spreads radially from the charge distribution in the
er
direction, and in each surface area element
dA, we have a unit vector
n perpendicular to the
surface and oriented outwards. Thus, at each point on the surface, the electric field vector
E and
the unit vector n have the same direction (Figure 2).
The electric field vector only has a component in the
er direction, it can be
written as
\[
\begin{gather}
\mathbf{E}=E{\;\mathbf{e}}_{r} \tag{II}
\end{gather}
\]
The area element vector can be written as
\[
\begin{gather}
d\mathbf{A}=dA\;\mathbf{n} \tag{III}
\end{gather}
\]
substituting expressions (II) and (III) into expression (I)
\[
\begin{gather}
\oint_{A}E\;{\mathbf{e}}_{r}.dA\;\mathbf{n}=\frac{q}{\epsilon_{0}}\\
\oint_{A}E\;dA\;\underbrace{{\mathbf{e}}_{r}.\mathbf{n}}_{1}=\frac{q}{\epsilon_{0}}
\end{gather}
\]
Note: As
er and
n are unit vectors, their magnitudes are
equal to 1, and as both are in the same direction, the angle between them is zero, θ=0,
\( {\mathbf{e}}_{r}.\mathbf{n}=|\;\mathbf{e}_{r}\;|\;|\;\mathbf{n}\;|\;\cos 0=1.1.1=1 \)
\[ {\mathbf{e}}_{r}.\mathbf{n}=|\;\mathbf{e}_{r}\;|\;|\;\mathbf{n}\;|\;\cos 0=1.1.1=1 \]
.
\[
\begin{gather}
\oint _{A}E\;dA=\frac{q}{\epsilon_{0}} \tag{IV}
\end{gather}
\]
The area element
dA will be (Figure 3-A)
\[
\begin{gather}
dA=r\;d\theta \;r\sin \theta \;d\phi\\
dA=r^{2}\;\sin \theta \;d\theta \;d\phi \tag{V}
\end{gather}
\]
substituting expression (V) into expression (VI)
\[
\begin{gather}
\int_{A}Er^{2}\sin \theta \;d\theta \;d\phi =\frac{q}{\epsilon_{0}} \tag{VI}
\end{gather}
\]
Since the electric field is uniform and the integral does not depend on the radius, they can be moved out
of the integral and the integrals can be separated.
\[
Er^{2}\int \sin \theta \;d\theta \int d\phi =\frac{q}{\epsilon_{0}}
\]
The limits of integration will be from 0 to π in
dθ and from 0 and 2π in
dϕ one lap at the base of the hemisphere, (Figure 3-B)
\[
Er^{2}\int_{0}^{\pi}\sin \theta \;d\theta \int_{0}^{{2\pi}}d\phi =\frac{q}{\epsilon_{0}}
\]
Integration of
\( \displaystyle \int_{0}^{\pi}\sin \theta \;d\theta \)
\[
\begin{split}
\int_{0}^{\pi}\sin \theta \;d\theta &\Rightarrow \left.-\cos\theta \;\right|_{\;0}^{\;\pi }\Rightarrow -(\cos \pi -\cos0)\Rightarrow\\
&\Rightarrow -(-1-1)\Rightarrow -(-2)= 2
\end{split}
\]
Integration of
\( \displaystyle \int_{0}^{2\pi}\;d\phi \)
\[
\int_{0}^{2\pi}\;d\phi \Rightarrow\left.\phi \;\right|_{\;0}^{\;2\pi}\Rightarrow2\pi-0=2\pi
\]
\[
Er^{2}\times 2\times 2\pi =\frac{q}{\epsilon_{0}}
\]
\[ \bbox[#FFCCCC,10px]
{E=\frac{q}{4\pi \epsilon_{0}r^{2}}}
\]