An arc of a circle of radius a and central angle θ0 carries an electric charge
Q uniformly distributed along the arc. Determine:
a) The electric field vector, at the points of the line passing through the center of the arc and is
perpendicular to the plane containing the arc;
b) The electric field vector in the center of curvature of the arc;
c) The electric field vector when the central angle tends to zero.
Problem data:
- Radius of the arc: a;
- Central angle of the arc: θ0;
- Electric charge on the arc: Q.
Problem diagram:
The position vector
r goes from an element of charge
dq to point
P where we want to
calculate the electric field, the vector
rq locates the charge element relative to
the origin of the reference frame, and the vector
rp locates point
P
(Figure 1-A).
\[
\begin{gather}
\mathbf r=\mathbf r_p-\mathbf r_q
\end{gather}
\]
From the geometry of the problem, we choose cylindrical coordinates (Figure 1-B), the
rq vector, which is on the
yz plane, is written as
\( \mathbf r_q=y\;\mathbf j+z\;\mathbf k \)
and the
rp vector only has a component in the
i direction,
\( \mathbf r_p=x\;\mathbf i \)
(contrary to what is usually where the
rq vector is on the
xy plane and the
axis of the cylinder in the
k direction), the position vector will be
\[
\begin{gather}
\mathbf r=x\;\mathbf i-\left(y\;\mathbf j+z\;\mathbf k\right)\\[5pt]
\mathbf r=x\;\mathbf i-y\;\mathbf j-z\;\mathbf k \tag{I}
\end{gather}
\]
From equation (I), the magnitude of the position vector will be
\[
\begin{gather}
r^2=x^2+(-y)^2+(-z)^2\\[5pt]
r=\left(x^2+y^2+z^2\right)^{\frac{1}{2}} \tag{II}
\end{gather}
\]
where
x,
y, and
z, in cylindrical coordinates, are given by
\[
\begin{gather}
\left\{
\begin{array}{l}
x=x\\
y=a\cos\theta\\
z=a\sin\theta
\end{array}
\right. \tag{III}
\end{gather}
\]
Solution:
a) The electric field vector is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\mathbf E=\frac{1}{4\pi\epsilon_0}\int{\frac{dq}{r^2}\;\frac{\mathbf r}{r}}}
\end{gather}
\]
\[
\begin{gather}
\mathbf E=\frac{1}{4\pi\epsilon_0}\int{\frac{dq}{r^{3}}\;\mathbf r} \tag{IV}
\end{gather}
\]
Using the equation of the linear density of charge λ, we have the charge element
dq
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\lambda=\frac{dq}{ds}}
\end{gather}
\]
\[
\begin{gather}
dq=\lambda\;ds \tag{V}
\end{gather}
\]
where
ds is an arc element with angle
dθ (Figure 2)
\[
\begin{gather}
ds=a\;d\theta \tag{VI}
\end{gather}
\]
substituting the equation (VI) into equation (V)
\[
\begin{gather}
dq=\lambda a\;d\theta \tag{VII}
\end{gather}
\]
Substituting equations (I), (II), and (VII) into equation (IV)
\[
\begin{gather}
\mathbf E=\frac{1}{4\pi\epsilon_0}\int{\frac{\lambda a\;d\theta}{\left[\left(x^2+y^2+z^2\right)^{1/2}\right]^{\;3}}}\left(x\;\mathbf i-y\;\mathbf j-z\;\mathbf k\right)\\[5pt]
\mathbf E=\frac{1}{4\pi\epsilon_0}\int{\frac{\lambda a\;d\theta}{\left(x^2+y^2+z^2\right)^{3/2}}}\left(x\;\mathbf i-y\;\mathbf j-z\;\mathbf k\right) \tag{VIII}
\end{gather}
\]
substituting equations (III) into equation (VIII)
\[
\begin{gather}
\mathbf E=\frac{1}{4\pi\epsilon_0}\int{\frac{\lambda a\;d\theta}{\left[\;x^2+\left(a\cos\theta\right)^2+\left(a\sin\theta\right)^2\right]^{3/2}}}\left(x\;\mathbf i-a\cos\theta\;\mathbf j-a\sin\theta\;\mathbf k\right)\\[5pt]
\mathbf E=\frac{1}{4\pi\epsilon_0}\int{\frac{\lambda a\;d\theta}{\left[x^2+a^2\cos^2\theta +a^2\sin^2\theta\;\right]^{3/2} }}\left(x\;\mathbf i-a\cos\theta\;\mathbf j-a\sin\theta\;\mathbf k\right)\\[5pt]
\mathbf E=\frac{1}{4\pi\epsilon_0}\int{\frac{\lambda a\;d\theta}{\left[x^2+a^2\underbrace{\left(\cos^2\theta+\sin^2\theta\right)}_{1}\right]^{3/2}}\left(x\;\mathbf i-a\cos\theta\;\mathbf j-a\sin\theta\;\mathbf k\right)}\\[5pt]
\mathbf E=\frac{1}{4\pi\epsilon_0}\int{\frac{\lambda a\;d\theta}{\left(x^2+a^2\right)^{3/2}}\left(x\;\mathbf i-a\cos\theta\;\mathbf j-a\sin\theta\;\mathbf k\right)}
\end{gather}
\]
As the charge density
λ and the radius
a are constants they are moved outside of the
integral, and the integral of the sum is equal to the sum of the integrals
\[
\begin{gather}
\mathbf E=\frac{1}{4\pi\epsilon_0}\frac{\lambda a}{\left(x^2+a^2\right)^{3/2}}\left(x\int d\theta\;\mathbf i-a\int \cos\theta d\theta\;\mathbf j-a\int \sin\theta\;d\theta\;\mathbf k\right)
\end{gather}
\]
As there is symmetry, we can divide the central angle
θ0 into two parts measuring
\( \frac{\theta_0}{2} \)
clockwise and
\( -{\frac{\theta_0}{2}} \)
counterclockwise (Figure 3), the integration limits will be
\( -{\frac{\theta_0}{2}} \)
and
\( \frac{\theta_0}{2} \)
\[
\begin{gather}
\mathbf E=\frac{1}{4\pi\epsilon_0}\frac{\lambda a}{\left(x^2+a^2\right)^{3/2}}\left(x\int_{-{\frac{\theta_0}{2}}}^{{\frac{\theta_0}{2}}}d\theta\;\mathbf i-a\int_{-{\frac{\theta_0}{2}}}^{{\frac{\theta_0}{2}}}\cos\theta\;d\theta\;\mathbf j-a\int_{-{\frac{\theta_0}{2}}}^{{\frac{\theta_0}{2}}}\sin\theta\;d\theta\;\mathbf k\right)
\end{gather}
\]
Figure 3
Integration of
\( \displaystyle \int_{-{\frac{\theta_0}{2}}}^{{\frac{\theta_0}{2}}}\;d\theta \)
\[
\begin{align}
\int_{-{\frac{\theta_0}{2}}}^{{\frac{\theta_0}{2}}}\;d\theta &=\frac{\theta_0}{2}-\left(-{\frac{\theta_0}{2}}\right)=\\
&=\frac{\theta_0}{2}+\frac{\theta_0}{2}=\cancel 2\frac{\theta_0}{\cancel 2}=\theta_0
\end{align}
\]
Integration of
\( \displaystyle \int_{-{\frac{\theta_{\;0}}{2}}}^{{\frac{\theta_{\;0}}{2}}}\cos\theta \;d\theta \)
\[
\begin{align}
\int_{-{\frac{\theta_0}{2}}}^{{\frac{\theta_0}{2}}}\cos\theta\;d\theta &=\left.\sin\theta\right|_{\;-\frac{\theta_0}{2}}^{\;\frac{\theta_0}{2}}=\\
&=\sin\frac{\theta_0}{2}-\sin\;\left(-{\frac{\theta_0}{2}}\right)
\end{align}
\]
the function sine is an odd function
\( f(-x)=-f(x) \),
\( \sin\left(-{\dfrac{\theta_0}{2}}\right)=-\sin\dfrac{\theta_0}{2} \)
\[
\begin{align}
\int_{-{\frac{\theta_0}{2}}}^{{\frac{\theta_0}{2}}}\cos\theta\;d\theta &=\sin\frac{\theta_0}{2}-\left[-\sin\;\frac{\theta_0}{2}\right]=\\
&=\sin\frac{\theta_0}{2}+\sin\frac{\theta_0}{2}=2\;\sin\;\frac{\theta_0}{2}
\end{align}
\]
Integration of
\( \displaystyle \int_{-{\frac{\theta_{;0}}{2}}}^{{\frac{\theta_{\;0}}{2}}}\sin\theta\;d\theta \)
\[
\begin{align}
\int_{-{\frac{\theta_0}{2}}}^{{\frac{\theta_0}{2}}}\sin\theta\;d\theta &=\left.-\cos\theta\right|_{\;-\frac{\theta_0}{2}}^{\;\frac{\theta_0}{2}}=\\
&=-\left[\cos\frac{\theta_0}{2}-\cos\left(-{\frac{\theta_0}{2}}\right)\right]
\end{align}
\]
the function cosine is an even function
\( f(x)=f(-x) \),
\( \cos\left(-{\dfrac{\theta_0}{2}}\right)=\cos\dfrac{\theta_0}{2} \)
\[
\begin{gather}
\int_{-{\frac{\theta_0}{2}}}^{{\frac{\theta_0}{2}}}\sin\theta\;d\theta=-\left[\cos\frac{\theta_0}{2}-\cos\frac{\theta_0}{2}\right]=0
\end{gather}
\]
\[
\begin{gather}
\mathbf E=\frac{1}{4\pi\epsilon_0}\frac{\lambda a}{\left(x^2+a^2\right)^{3/2}}\left(x\theta_0\;\mathbf i-2a\sin\frac{\theta_0}{2}\;\mathbf j-0\;\mathbf k\right)\\[5pt]
\mathbf E=\frac{1}{4\pi\epsilon_0}\frac{\lambda a}{\left(x^2+a^2\right)^{3/2}}\left(x\theta_0\;\mathbf i-2a\sin\frac{\theta_0}{2}\;\mathbf j\right) \tag{IX}
\end{gather}
\]
Note: the integral in the
k direction is equal to zero, because an element of charge
dq, produces at a point, an element of the field that can be decomposed in the elements,
dEx, −
dEy and
−
dEz (Figure 4-A). Another element of charge placed in a symmetrical
position produces at the same point another element of the field that can be decomposed in the elements
dEx, −
dEy, and
dEz (Figure 4-B). Hence, the elements in the
k direction cancel and
only elements in the
i and
j directions contribute to the total field.
The total charge of the arc is
Q, and its length is
aθ0, so the linear
density of charge can be written
\[
\begin{gather}
\lambda=\frac{Q}{a\theta_0} \tag{X}
\end{gather}
\]
substituting equation (X) into equation (IX)
\[
\begin{gather}
\mathbf E=\frac{1}{4\pi\epsilon_0}\frac{Q}{a\theta_0}\frac{a}{\left(x^2+a^2\right)^{3/2}}\left(x\theta_0\;\mathbf i-2a\sin\frac{\theta_0}{2}\;\mathbf j\right)\\[5pt]
\mathbf E=\frac{1}{4\pi\epsilon_0}\frac{Q}{\left(x^2+a^2\right)^{3/2}}\left(\frac{1}{\theta_0}x\theta_0\;\mathbf i-\frac{1}{\theta_0}2a\sin\frac{\theta_0}{2}\;\mathbf j\right)
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{\mathbf E=\frac{1}{4\pi\epsilon_0}\frac{Q}{\left(x^2+a^2\right)^{3/2}}\left(x\;\mathbf i-\frac{2a}{\theta_0}\sin\frac{\theta_0}{2}\;\mathbf j\right)}
\end{gather}
\]
b) In the center of curvature, we have
x = 0, substituting this in the solution of the previous item
(Figure 6)
\[
\begin{gather}
\mathbf E=\frac{1}{4\pi\epsilon_0}\frac{Q}{\left(0^2+a^2\right)^{3/2}}\left(0\;\mathbf i-\frac{2a}{\theta_0}\sin\frac{\theta_0}{2}\;\mathbf j\right)\\[5pt]
\mathbf E=\frac{-{1}}{4\pi\epsilon_0}\frac{Q}{a^{3}}\frac{2a}{\theta_0}\sin\frac{\theta_0}{2}\;\mathbf j
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{\mathbf E=\frac{-{1}}{4\pi\epsilon_0}\frac{Q}{a^2}\frac{2}{\theta_0}\sin\frac{\theta_0}{2}\;\mathbf j}
\end{gather}
\]
c) When the central angle tends to zero
(
\( \theta_0\rightarrow 0 \)),
the arc tends to a point charge, applying the limit to the solution of the previous item (Figure 7)
\[
\begin{gather}
\mathbf E=\underset{\theta_0\rightarrow0}{\lim}-\frac{1}{4\pi\epsilon_0}\;\frac{Q}{a^2}\frac{2}{\theta_0}\sin\frac{\theta_0}{2}\;\mathbf j
\end{gather}
\]
turning the term
\( \frac{2}{\theta_0} \)
upside down
\[
\begin{gather}
\mathbf E=\underset{\theta_0\rightarrow 0}{\lim}-{\frac{1}{4\pi\epsilon_0}\frac{Q}{a^2}\dfrac{\sin\dfrac{\theta_0}{2}}{\dfrac{\theta_0}{2}}\;\mathbf j}
\end{gather}
\]
From the limit
\( \underset{x\rightarrow 0}{\lim}{\dfrac{\sin x}{x}}=1 \)
\[
\begin{gather}
\mathbf E=-{\frac{1}{4\pi\epsilon_0}}\frac{Q}{a^2}\underbrace{\;\underset{\theta_0\rightarrow 0}{\lim }{\dfrac{\sin\dfrac{\theta_0}{2}}{\dfrac{\theta_0}{2}}}}_{1}\;\mathbf j
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{\mathbf E=-{\frac{Q}{4\pi\epsilon_0a^2}}\;\mathbf j}
\end{gather}
\]
and the result is reduced to the electric field vector of a point charge.