Solved Problem on Electric Field
advertisement   



An arc of a circle of radius a and central angle θ0 carries an electric charge Q uniformly distributed along the arc. Determine:
a) The electric field vector, at the points of the line passing through the center of the arc and is perpendicular to the plane containing the arc;
b) The electric field vector in the center of curvature of the arc;
c) The electric field vector when the central angle tends to zero.


Problem data:
  • Radius of the arc:    a;
  • Central angle of the arc:    θ0;
  • Electric charge on the arc:    Q.
Problem diagram:

The position vector r goes from an element of charge dq to point P where we want to calculate the electric field, the vector rq locates the charge element relative to the origin of the reference frame, and the vector rp locates point P (Figure 1-A).
\[ \begin{gather} \mathbf r=\mathbf r_p-\mathbf r_q \end{gather} \]
Figure 1

From the geometry of the problem, we choose cylindrical coordinates (Figure 1-B), the rq vector, which is on the yz plane, is written as \( \mathbf r_q=y\;\mathbf j+z\;\mathbf k \) and the rp vector only has a component in the i direction, \( \mathbf r_p=x\;\mathbf i \) (contrary to what is usually where the rq vector is on the xy plane and the axis of the cylinder in the k direction), the position vector will be
\[ \begin{gather} \mathbf r=x\;\mathbf i-\left(y\;\mathbf j+z\;\mathbf k\right)\\[5pt] \mathbf r=x\;\mathbf i-y\;\mathbf j-z\;\mathbf k \tag{I} \end{gather} \]
From equation (I), the magnitude of the position vector will be
\[ \begin{gather} r^2=x^2+(-y)^2+(-z)^2\\[5pt] r=\left(x^2+y^2+z^2\right)^{\frac{1}{2}} \tag{II} \end{gather} \]
where x, y, and z, in cylindrical coordinates, are given by
\[ \begin{gather} \left\{ \begin{array}{l} x=x\\ y=a\cos\theta\\ z=a\sin\theta \end{array} \right. \tag{III} \end{gather} \]
Solution:

a) The electric field vector is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {\mathbf E=\frac{1}{4\pi\epsilon_0}\int{\frac{dq}{r^2}\;\frac{\mathbf r}{r}}} \end{gather} \]
\[ \begin{gather} \mathbf E=\frac{1}{4\pi\epsilon_0}\int{\frac{dq}{r^{3}}\;\mathbf r} \tag{IV} \end{gather} \]
Using the equation of the linear density of charge λ, we have the charge element dq
\[ \begin{gather} \bbox[#99CCFF,10px] {\lambda=\frac{dq}{ds}} \end{gather} \]
\[ \begin{gather} dq=\lambda\;ds \tag{V} \end{gather} \]
where ds is an arc element with angle (Figure 2)
\[ \begin{gather} ds=a\;d\theta \tag{VI} \end{gather} \]
substituting the equation (VI) into equation (V)
\[ \begin{gather} dq=\lambda a\;d\theta \tag{VII} \end{gather} \]
Figure 2

Substituting equations (I), (II), and (VII) into equation (IV)
\[ \begin{gather} \mathbf E=\frac{1}{4\pi\epsilon_0}\int{\frac{\lambda a\;d\theta}{\left[\left(x^2+y^2+z^2\right)^{1/2}\right]^{\;3}}}\left(x\;\mathbf i-y\;\mathbf j-z\;\mathbf k\right)\\[5pt] \mathbf E=\frac{1}{4\pi\epsilon_0}\int{\frac{\lambda a\;d\theta}{\left(x^2+y^2+z^2\right)^{3/2}}}\left(x\;\mathbf i-y\;\mathbf j-z\;\mathbf k\right) \tag{VIII} \end{gather} \]
substituting equations (III) into equation (VIII)
\[ \begin{gather} \mathbf E=\frac{1}{4\pi\epsilon_0}\int{\frac{\lambda a\;d\theta}{\left[\;x^2+\left(a\cos\theta\right)^2+\left(a\sin\theta\right)^2\right]^{3/2}}}\left(x\;\mathbf i-a\cos\theta\;\mathbf j-a\sin\theta\;\mathbf k\right)\\[5pt] \mathbf E=\frac{1}{4\pi\epsilon_0}\int{\frac{\lambda a\;d\theta}{\left[x^2+a^2\cos^2\theta +a^2\sin^2\theta\;\right]^{3/2} }}\left(x\;\mathbf i-a\cos\theta\;\mathbf j-a\sin\theta\;\mathbf k\right)\\[5pt] \mathbf E=\frac{1}{4\pi\epsilon_0}\int{\frac{\lambda a\;d\theta}{\left[x^2+a^2\underbrace{\left(\cos^2\theta+\sin^2\theta\right)}_{1}\right]^{3/2}}\left(x\;\mathbf i-a\cos\theta\;\mathbf j-a\sin\theta\;\mathbf k\right)}\\[5pt] \mathbf E=\frac{1}{4\pi\epsilon_0}\int{\frac{\lambda a\;d\theta}{\left(x^2+a^2\right)^{3/2}}\left(x\;\mathbf i-a\cos\theta\;\mathbf j-a\sin\theta\;\mathbf k\right)} \end{gather} \]
As the charge density λ and the radius a are constants they are moved outside of the integral, and the integral of the sum is equal to the sum of the integrals
\[ \begin{gather} \mathbf E=\frac{1}{4\pi\epsilon_0}\frac{\lambda a}{\left(x^2+a^2\right)^{3/2}}\left(x\int d\theta\;\mathbf i-a\int \cos\theta d\theta\;\mathbf j-a\int \sin\theta\;d\theta\;\mathbf k\right) \end{gather} \]
As there is symmetry, we can divide the central angle θ0 into two parts measuring \( \frac{\theta_0}{2} \) clockwise and \( -{\frac{\theta_0}{2}} \) counterclockwise (Figure 3), the integration limits will be \( -{\frac{\theta_0}{2}} \) and \( \frac{\theta_0}{2} \)
\[ \begin{gather} \mathbf E=\frac{1}{4\pi\epsilon_0}\frac{\lambda a}{\left(x^2+a^2\right)^{3/2}}\left(x\int_{-{\frac{\theta_0}{2}}}^{{\frac{\theta_0}{2}}}d\theta\;\mathbf i-a\int_{-{\frac{\theta_0}{2}}}^{{\frac{\theta_0}{2}}}\cos\theta\;d\theta\;\mathbf j-a\int_{-{\frac{\theta_0}{2}}}^{{\frac{\theta_0}{2}}}\sin\theta\;d\theta\;\mathbf k\right) \end{gather} \]

Figure 3

Integration of    \( \displaystyle \int_{-{\frac{\theta_0}{2}}}^{{\frac{\theta_0}{2}}}\;d\theta \)
\[ \begin{align} \int_{-{\frac{\theta_0}{2}}}^{{\frac{\theta_0}{2}}}\;d\theta &=\frac{\theta_0}{2}-\left(-{\frac{\theta_0}{2}}\right)=\\ &=\frac{\theta_0}{2}+\frac{\theta_0}{2}=\cancel 2\frac{\theta_0}{\cancel 2}=\theta_0 \end{align} \]

Integration of    \( \displaystyle \int_{-{\frac{\theta_{\;0}}{2}}}^{{\frac{\theta_{\;0}}{2}}}\cos\theta \;d\theta \)
\[ \begin{align} \int_{-{\frac{\theta_0}{2}}}^{{\frac{\theta_0}{2}}}\cos\theta\;d\theta &=\left.\sin\theta\right|_{\;-\frac{\theta_0}{2}}^{\;\frac{\theta_0}{2}}=\\ &=\sin\frac{\theta_0}{2}-\sin\;\left(-{\frac{\theta_0}{2}}\right) \end{align} \]
the function sine is an odd function \( f(-x)=-f(x) \), \( \sin\left(-{\dfrac{\theta_0}{2}}\right)=-\sin\dfrac{\theta_0}{2} \)
\[ \begin{align} \int_{-{\frac{\theta_0}{2}}}^{{\frac{\theta_0}{2}}}\cos\theta\;d\theta &=\sin\frac{\theta_0}{2}-\left[-\sin\;\frac{\theta_0}{2}\right]=\\ &=\sin\frac{\theta_0}{2}+\sin\frac{\theta_0}{2}=2\;\sin\;\frac{\theta_0}{2} \end{align} \]

Integration of    \( \displaystyle \int_{-{\frac{\theta_{;0}}{2}}}^{{\frac{\theta_{\;0}}{2}}}\sin\theta\;d\theta \)
\[ \begin{align} \int_{-{\frac{\theta_0}{2}}}^{{\frac{\theta_0}{2}}}\sin\theta\;d\theta &=\left.-\cos\theta\right|_{\;-\frac{\theta_0}{2}}^{\;\frac{\theta_0}{2}}=\\ &=-\left[\cos\frac{\theta_0}{2}-\cos\left(-{\frac{\theta_0}{2}}\right)\right] \end{align} \]
the function cosine is an even function \( f(x)=f(-x) \), \( \cos\left(-{\dfrac{\theta_0}{2}}\right)=\cos\dfrac{\theta_0}{2} \)
\[ \begin{gather} \int_{-{\frac{\theta_0}{2}}}^{{\frac{\theta_0}{2}}}\sin\theta\;d\theta=-\left[\cos\frac{\theta_0}{2}-\cos\frac{\theta_0}{2}\right]=0 \end{gather} \]
\[ \begin{gather} \mathbf E=\frac{1}{4\pi\epsilon_0}\frac{\lambda a}{\left(x^2+a^2\right)^{3/2}}\left(x\theta_0\;\mathbf i-2a\sin\frac{\theta_0}{2}\;\mathbf j-0\;\mathbf k\right)\\[5pt] \mathbf E=\frac{1}{4\pi\epsilon_0}\frac{\lambda a}{\left(x^2+a^2\right)^{3/2}}\left(x\theta_0\;\mathbf i-2a\sin\frac{\theta_0}{2}\;\mathbf j\right) \tag{IX} \end{gather} \]
Note: the integral in the k direction is equal to zero, because an element of charge dq, produces at a point, an element of the field that can be decomposed in the elements, dEx, −dEy and −dEz (Figure 4-A). Another element of charge placed in a symmetrical position produces at the same point another element of the field that can be decomposed in the elements dEx, −dEy, and dEz (Figure 4-B). Hence, the elements in the k direction cancel and only elements in the i and j directions contribute to the total field.

Figure 4

The total charge of the arc is Q, and its length is 0, so the linear density of charge can be written
\[ \begin{gather} \lambda=\frac{Q}{a\theta_0} \tag{X} \end{gather} \]
substituting equation (X) into equation (IX)
\[ \begin{gather} \mathbf E=\frac{1}{4\pi\epsilon_0}\frac{Q}{a\theta_0}\frac{a}{\left(x^2+a^2\right)^{3/2}}\left(x\theta_0\;\mathbf i-2a\sin\frac{\theta_0}{2}\;\mathbf j\right)\\[5pt] \mathbf E=\frac{1}{4\pi\epsilon_0}\frac{Q}{\left(x^2+a^2\right)^{3/2}}\left(\frac{1}{\theta_0}x\theta_0\;\mathbf i-\frac{1}{\theta_0}2a\sin\frac{\theta_0}{2}\;\mathbf j\right) \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\mathbf E=\frac{1}{4\pi\epsilon_0}\frac{Q}{\left(x^2+a^2\right)^{3/2}}\left(x\;\mathbf i-\frac{2a}{\theta_0}\sin\frac{\theta_0}{2}\;\mathbf j\right)} \end{gather} \]
Figure 5

b) In the center of curvature, we have x = 0, substituting this in the solution of the previous item (Figure 6)

\[ \begin{gather} \mathbf E=\frac{1}{4\pi\epsilon_0}\frac{Q}{\left(0^2+a^2\right)^{3/2}}\left(0\;\mathbf i-\frac{2a}{\theta_0}\sin\frac{\theta_0}{2}\;\mathbf j\right)\\[5pt] \mathbf E=\frac{-{1}}{4\pi\epsilon_0}\frac{Q}{a^{3}}\frac{2a}{\theta_0}\sin\frac{\theta_0}{2}\;\mathbf j \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\mathbf E=\frac{-{1}}{4\pi\epsilon_0}\frac{Q}{a^2}\frac{2}{\theta_0}\sin\frac{\theta_0}{2}\;\mathbf j} \end{gather} \]
Figure 6

c) When the central angle tends to zero (\( \theta_0\rightarrow 0 \)), the arc tends to a point charge, applying the limit to the solution of the previous item (Figure 7)

\[ \begin{gather} \mathbf E=\underset{\theta_0\rightarrow0}{\lim}-\frac{1}{4\pi\epsilon_0}\;\frac{Q}{a^2}\frac{2}{\theta_0}\sin\frac{\theta_0}{2}\;\mathbf j \end{gather} \]
turning the term \( \frac{2}{\theta_0} \) upside down
\[ \begin{gather} \mathbf E=\underset{\theta_0\rightarrow 0}{\lim}-{\frac{1}{4\pi\epsilon_0}\frac{Q}{a^2}\dfrac{\sin\dfrac{\theta_0}{2}}{\dfrac{\theta_0}{2}}\;\mathbf j} \end{gather} \]
Figure 7

From the limit   \( \underset{x\rightarrow 0}{\lim}{\dfrac{\sin x}{x}}=1 \)

\[ \begin{gather} \mathbf E=-{\frac{1}{4\pi\epsilon_0}}\frac{Q}{a^2}\underbrace{\;\underset{\theta_0\rightarrow 0}{\lim }{\dfrac{\sin\dfrac{\theta_0}{2}}{\dfrac{\theta_0}{2}}}}_{1}\;\mathbf j \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\mathbf E=-{\frac{Q}{4\pi\epsilon_0a^2}}\;\mathbf j} \end{gather} \]
and the result is reduced to the electric field vector of a point charge.
advertisement