Solved Problem on Coulomb's Law and Electric Field
advertisement   



Two concentric rings are located on the same plane. The ring of radius R1 has a charge Q1, and the ring of radius R2 has a charge Q2. The electric field vector produced by a ring of radius r at a distance z from the center is given by
\[ \begin{gather} \mathbf{E}=\frac{1}{4\pi \epsilon_0}\frac{Qz}{\left(r^2+z^2\right)^{3/2}}\;\mathbf{k} \end{gather} \]
Determine the electric field vector:
a) In the common center of the two rings;
b) At a point located at a distance z, much greater than R1 and R2.


Problem data:
  • Radius of ring 1:    R1;
  • Charge of ring 1:    Q1;
  • Radius of ring 2:    R2;
  • Charge of ring 2:    Q2.
Problem diagram:

We choose a frame of reference at the center of the rings with R1>R2 (Figure 1-A).

Figure 1

We want to calculate the electric field at the common center of the two rings, at the origin at z=0, and any point z at a distance much greater than the radii R1 and R2 of the rings (Figure 1-B).

Solution

The total electric field vector is given by the sum of the electric field vectors produced by each of the rings
\[ \begin{gather} \bbox[#99CCFF,10px] {\mathbf{E}=\mathbf{E}_1+\mathbf{E}_2} \end{gather} \]
a) For ring 1, the electric field vector will be
\[ \begin{gather} \mathbf{E}_1=\frac{1}{4\pi \epsilon_0}\frac{Q_1\times0}{\left(R_1^2+0^2\right)^{3/2}}\;\mathbf{k}=0 \end{gather} \]
For ring 2, the electric field vector will be
\[ \begin{gather} \mathbf{E}_2=\frac{1}{4\pi \epsilon_0}\frac{Q_1\times0}{\left(R_2^2+0^2\right)^{3/2}}\;\mathbf{k}=0 \end{gather} \]
The total electric field vector will be
\[ \begin{gather} \mathbf{E}=0+0 \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\mathbf{E}=0} \end{gather} \]


b) For ring 1, the electric field vector at a distance z will be
\[ \begin{gather} \mathbf{E}_1=\frac{1}{4\pi \epsilon_0}\frac{Q_1z}{\left(R_1^2+z^2\right)^{3/2}}\;\mathbf{k} \end{gather} \]
if zR1, we can neglect the value of R1
\[ \begin{gather} \mathbf{E}_1=\frac{1}{4\pi \epsilon_0}\frac{Q_1z}{\left(z^2\right)^{3/2}}\;\mathbf{k}\\[5pt] \mathbf{E}_1=\frac{1}{4\pi\epsilon_{0}}\frac{Q_1z}{z^{2\times{\frac{3}{2}}}}\;\mathbf{k}\\[5pt] \mathbf{E}_1=\frac{1}{4\pi\epsilon_0}\frac{Q_1\cancel z}{z^{\cancelto{2}{3}}}\;\mathbf{k}\\[5pt] \mathbf{E}_1=\frac{1}{4\pi\epsilon_0}\frac{Q_1}{z^2}\;\mathbf{k} \end{gather} \]
For ring 2, the electric field vector will be
\[ \begin{gather} \mathbf{E}_2=\frac{1}{4\pi \epsilon_0}\frac{Q_1z}{\left(R_2^2+z^2\right)^{3/2}}\;\mathbf{k} \end{gather} \]
if zR2, we can neglect the value of R2
\[ \begin{gather} \mathbf{E}_2=\frac{1}{4\pi \epsilon_0}\frac{Q_2z}{\left(z^2\right)^{3/2}}\;\mathbf{k}\\[5pt] \mathbf{E}_2=\frac{1}{4\pi\epsilon_{0}}\frac{Q_2z}{z^{2\times{\frac{3}{2}}}}\;\mathbf{k}\\[5pt] \mathbf{E}_2=\frac{1}{4\pi\epsilon_0}\frac{Q_2\cancel z}{z^{\cancelto{2}{3}}}\;\mathbf{k}\\[5pt] \mathbf{E}_2=\frac{1}{4\pi\epsilon_0}\frac{Q_2}{z^2}\;\mathbf{k} \end{gather} \]
The total electric field vector will be
\[ \begin{gather} \mathbf{E}=\frac{1}{4\pi \epsilon_0}\frac{Q_1}{z^2}\;\mathbf{k}+\frac{1}{4\pi\epsilon_{0}}\frac{Q_2}{z^2}\;\mathbf{k} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\mathbf{E}=\frac{1}{4\pi \epsilon_0}\frac{\left(Q_1+Q_2\right)}{z^2}\;\mathbf{k}} \end{gather} \]
advertisement