Two concentric rings are located on the same plane. The ring of radius
R1 has a charge
Q1, and the ring of radius
R2 has a charge
Q2. The
electric field vector produced by a ring of radius
r at a distance
z from the center is
given by
\[
\begin{gather}
\mathbf{E}=\frac{1}{4\pi \epsilon_0}\frac{Qz}{\left(r^2+z^2\right)^{3/2}}\;\mathbf{k}
\end{gather}
\]
Determine the electric field vector:
a) In the common center of the two rings;
b) At a point located at a distance z, much greater than
R1 and
R2.
Problem data:
- Radius of ring 1: R1;
- Charge of ring 1: Q1;
- Radius of ring 2: R2;
- Charge of ring 2: Q2.
Problem diagram:
We choose a frame of reference at the center of the rings with
R1>
R2
(Figure 1-A).
We want to calculate the electric field at the common center of the two rings, at the origin at
z=0,
and any point
z at a distance much greater than the radii
R1 and
R2 of the rings (Figure 1-B).
Solution
The total electric field vector is given by the sum of the electric field vectors produced by each of the
rings
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\mathbf{E}=\mathbf{E}_1+\mathbf{E}_2}
\end{gather}
\]
a) For ring 1, the electric field vector will be
\[
\begin{gather}
\mathbf{E}_1=\frac{1}{4\pi \epsilon_0}\frac{Q_1\times0}{\left(R_1^2+0^2\right)^{3/2}}\;\mathbf{k}=0
\end{gather}
\]
For ring 2, the electric field vector will be
\[
\begin{gather}
\mathbf{E}_2=\frac{1}{4\pi \epsilon_0}\frac{Q_1\times0}{\left(R_2^2+0^2\right)^{3/2}}\;\mathbf{k}=0
\end{gather}
\]
The total electric field vector will be
\[
\begin{gather}
\mathbf{E}=0+0
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{\mathbf{E}=0}
\end{gather}
\]
b) For ring 1, the electric field vector at a distance z will be
\[
\begin{gather}
\mathbf{E}_1=\frac{1}{4\pi \epsilon_0}\frac{Q_1z}{\left(R_1^2+z^2\right)^{3/2}}\;\mathbf{k}
\end{gather}
\]
if
z≫
R1, we can neglect the value of
R1
\[
\begin{gather}
\mathbf{E}_1=\frac{1}{4\pi \epsilon_0}\frac{Q_1z}{\left(z^2\right)^{3/2}}\;\mathbf{k}\\[5pt]
\mathbf{E}_1=\frac{1}{4\pi\epsilon_{0}}\frac{Q_1z}{z^{2\times{\frac{3}{2}}}}\;\mathbf{k}\\[5pt]
\mathbf{E}_1=\frac{1}{4\pi\epsilon_0}\frac{Q_1\cancel z}{z^{\cancelto{2}{3}}}\;\mathbf{k}\\[5pt]
\mathbf{E}_1=\frac{1}{4\pi\epsilon_0}\frac{Q_1}{z^2}\;\mathbf{k}
\end{gather}
\]
For ring 2, the electric field vector will be
\[
\begin{gather}
\mathbf{E}_2=\frac{1}{4\pi \epsilon_0}\frac{Q_1z}{\left(R_2^2+z^2\right)^{3/2}}\;\mathbf{k}
\end{gather}
\]
if
z≫
R2, we can neglect the value of
R2
\[
\begin{gather}
\mathbf{E}_2=\frac{1}{4\pi \epsilon_0}\frac{Q_2z}{\left(z^2\right)^{3/2}}\;\mathbf{k}\\[5pt]
\mathbf{E}_2=\frac{1}{4\pi\epsilon_{0}}\frac{Q_2z}{z^{2\times{\frac{3}{2}}}}\;\mathbf{k}\\[5pt]
\mathbf{E}_2=\frac{1}{4\pi\epsilon_0}\frac{Q_2\cancel z}{z^{\cancelto{2}{3}}}\;\mathbf{k}\\[5pt]
\mathbf{E}_2=\frac{1}{4\pi\epsilon_0}\frac{Q_2}{z^2}\;\mathbf{k}
\end{gather}
\]
The total electric field vector will be
\[
\begin{gather}
\mathbf{E}=\frac{1}{4\pi \epsilon_0}\frac{Q_1}{z^2}\;\mathbf{k}+\frac{1}{4\pi\epsilon_{0}}\frac{Q_2}{z^2}\;\mathbf{k}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{\mathbf{E}=\frac{1}{4\pi \epsilon_0}\frac{\left(Q_1+Q_2\right)}{z^2}\;\mathbf{k}}
\end{gather}
\]