Solved Problem on Coulomb's Law and Electric Field
advertisement   



Determine the electric field vector of a dipole at the points located on the perpendicular bisector of the dipole. Check the answer for points far from the center of the dipole.


Problem diagram:

The vector r locates the point P, where we want to calculate the electric field relative to the origin, and is written as   \( \mathbf{r}=d\;\mathbf{i}+y\;\mathbf{j} \). The vector r1 goes from the origin to the charge +q, as the charge is located at the origin this vector is equal to zero,   \( \mathbf{r}_{1}=\mathbf{0} \). The vector rr1 goes from the charge to point P, in this case it coincides with the vector r, it is given by   \( \mathbf{\text{r}}-\mathbf{r}_{1}=d\;\mathbf{i}+y\;\mathbf{j}-\mathbf{0}=d\;\mathbf{i}+y\;\mathbf{j} \), (Figure 1).
Figure 1

The vector r is the same as in the previous situation. The vector r2 goes from the origin to the charge −q, and is given by   \( \mathbf{r}_{2}=2d\mathbf{i} \). The vector rr2 goes from the charge to the point P, and is given by   \( \mathbf{r}-\mathbf{r}_{2}=d\;\mathbf{i}+y\;\mathbf{j}-2d\mathbf{i}=-d\;\mathbf{i}+y\;\mathbf{j} \), (Figure 2).
Figure 2

Solution

The electric field vector of a discrete system of charges is calculated by
\[ \begin{gather} \bbox[#99CCFF,10px] {\mathbf{E}=\frac{1}{4\pi \epsilon_{0}}\;\sum_{i=1}^{n}\;\frac{q_{i}}{\left|\mathbf{r}-\mathbf{r}_{i}\right|^{2}}\;\frac{\mathbf{r}-\mathbf{r}_{i}}{\left|\mathbf{r}-\mathbf{r}_{i}\right|}} \end{gather} \]
\[ \begin{gather} \mathbf{E}=\frac{1}{4\pi \epsilon_{0}}\left\{\frac{q_{1}}{\left|\mathbf{r}-\mathbf{r}_{1}\right|^{2}}\;\frac{\mathbf{r}-\mathbf{r}_{1}}{\left|\mathbf{r}-\mathbf{r}_{1}\right|}+\frac{q_{2}}{\left|\mathbf{r}-\mathbf{r}_{2}\right|^{2}}\;\frac{\mathbf{r}-\mathbf{r}_{2}}{\left|\mathbf{r}-\mathbf{r}_{2}\right|}\right\} \end{gather} \]
The denominators of the above equation are written as   \( \left|\mathbf{r}-\mathbf{r}_{1}\right|=\sqrt{d^{2}+y^{2}\;} \),   \( \left|\mathbf{r}-\mathbf{r}_{1}\right|^{2}=d^{2}+y^{2} \),   \( \left|\mathbf{r}-\mathbf{r}_{2}\right|=\sqrt{(-d)^{2}+y^{2}\;}=\sqrt{d^{2}+y^{2}\;} \).   and   \( \left|\mathbf{r}-\mathbf{r}_{2}\right|^{2}=d^{2}+y^{2} \)
\[ \begin{gather} \mathbf{E}=\frac{1}{4\pi \epsilon_{0}}\left\{\frac{q}{\left(d^{2}+y^{2}\right)^{3/2}}\;\left(d\;\mathbf{i}+y\;\mathbf{j}\right)+\frac{-q}{\left(d^{2}+y^{2}\right)^{3/2}}\;\left(-d\;\mathbf{i}+y\;\mathbf{j}\right)\right\}\\[5pt] \mathbf{E}=\frac{1}{4\pi\epsilon_{0}}\frac{q}{\left(d^{2}+y^{2}\right)^{3/2}}\left[d\;\mathbf{i}+y\;\mathbf{j}+d\;\mathbf{i}-y\;\mathbf{j}\right]\\[5pt] \mathbf{E}=\frac{1}{4\pi\epsilon_{0}}\frac{2dq}{\left(d^{2}+y^2\right)^{3/2}}\;\mathbf{i} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\mathbf{E}=\frac{1}{4\pi \epsilon_{0}}\frac{2qd}{\left(d^{2}+y^{2}\right)^{3/2}}\;\mathbf{i}} \end{gather} \]

Note: The dipole moment p is given by the product of the charge and the distance between them, in the result above, we have the magnitude
\[ \begin{gather} p=q\times (2d) \end{gather} \]
the solution is written as
\[ \begin{gather} \mathbf{E}=\frac{1}{4\pi \epsilon_{0}}\frac{p}{\left(d^{2}+y^{2}\right)^{3/2}}\;\mathbf{i} \end{gather} \]

For points far from the center of the dipole we have, yd, we can neglect the term in d2 in the denominator, and the solution will be
\[ \begin{gather} \bbox[#FFCCCC,10px] {\mathbf{E}=\frac{1}{4\pi \epsilon_{0}}\frac{2qd}{y^{3}}\;\mathbf{i}} \end{gather} \]

Note: Using the dipole moment solution is written as
\[ \begin{gather} \mathbf{E}=\frac{1}{4\pi \epsilon_{0}}\frac{p}{y^{3}}\;\mathbf{i} \end{gather} \]
advertisement