A wire of length
L carries a uniformly distributed charge
Q. Determine the electric field
vector at a point
P of the line that contains the wire,
x>
L, is the coordinate of
the outer point to the wire;
Problem data:
- Wire length: L;
- Wire charge: Q.
Problem diagram:
The position vector
r goes from an element of charge
dq to point
P where we want to
calculate the electric field, the vector
rq locates the charge element relative to
the origin of the reference frame, and the vector
rp locates point
P, the
problem is one-dimensional, all vectors are on the
x-axis, in Figure 1 the elements were drawn
separated to facilitate viewing.
\[
\mathbf{r}={\mathbf{r}}_{p}-{\mathbf{r}}_{q}
\]
From the geometry of the problem we choose Cartesian coordinates, we chose the origin of the system at the
right end of the wire closest to point
P, the vector
rq is written as
\( {\mathbf{r}}_{q}=-x_{q}\;\mathbf{i} \)
and the
rp vector as
\( {\mathbf{r}}_{p}=x_{p}\;\mathbf{i} \),
where
xp is the distance to the desired point measured from the origin chosen,
then the vector position will be
\[
\begin{gather}
\mathbf{r}=x_{p}\;\mathbf{i}-(-x_{q}\;\mathbf{i})\\
\mathbf{r}=(x_{p}+x_{q})\;\mathbf{i} \tag{I}
\end{gather}
\]
From expression (I), the magnitude of the position vector
r will be
\[
\begin{gather}
r^{2}=(x_{p}+x_{q})^{2}\\
r=(x_{p}+x_{q}) \tag{II}
\end{gather}
\]
Solution
The electric field vector is given by
\[ \bbox[#99CCFF,10px]
{\mathbf{E}=\frac{1}{4\pi \epsilon_{0}}\int{\frac{dq}{r^{2}}\;\frac{\mathbf{r}}{r}}}
\]
\[
\begin{gather}
\mathbf{E}=\frac{1}{4\pi \epsilon_{0}}\int{\frac{dq}{r^{3}}\;\mathbf{r}} \tag{III}
\end{gather}
\]
Using the expression of the linear density of charge λ, we have the charge element
dq
\[ \bbox[#99CCFF,10px]
{\lambda =\frac{dq}{ds}}
\]
\[
\begin{gather}
dq=\lambda \;ds \tag{IV}
\end{gather}
\]
where
ds is an element of length of the wire
\[
\begin{gather}
ds=dx_{q} \tag{V}
\end{gather}
\]
substituting the expression (V) into expression (IV)
\[
\begin{gather}
dq=\lambda \;dx_{q} \tag{VI}
\end{gather}
\]
Substituting expressions (I), (II), and (VI) into expression (III)
\[
\begin{gather}
\mathbf{E}=\frac{1}{4\pi \epsilon_{0}}\int {\frac{\lambda\;dx_{q}}{\left(x_{p}+x_{q}\right)^{\cancelto{2}{3}}}}\cancel{\left(x_{p}+x_{q}\right)}\;\mathbf{i}\\
\mathbf{E}=\frac{1}{4\pi\epsilon_{0}}\int {\frac{\lambda\;dx_{q}}{\left(x_{p}+x_{q}\right)^{2}}}\;\mathbf{i} \tag{VII}
\end{gather}
\]
As the charge density λ is constant, it is moved outside of the integral
\[
\mathbf{E}=\frac{\lambda}{4\pi \epsilon_{0}}\int{\frac{dx_{q}}{\left(x_{p}+x_{q}\right)^{2}}}\;\mathbf{i}
\]
The limits of integration will be 0 and
L the length of the wire
\[
\mathbf{E}=\frac{\lambda}{4\pi \epsilon_{0}}\int_{0}^{L}{\frac{dx_{q}}{\left(x_{p}+x_{q}\right)^{2}}}\;\mathbf{i}
\]
Integration of
\( \displaystyle \int_{0}^{L}{\frac{dx_{q}}{\left(x_{p}+x_{q}\right)^{2}}} \)
Changing the variable
\[
\begin{array}{l}
u=x_{p}+x_{q}\\
\dfrac{du}{dx_{q}}=1\Rightarrow dx_{q}=du
\end{array}
\]
changing the limits of integration
for
xq = 0
we have
\( u=x_{p}-0\Rightarrow u=x_{p} \)
for
xq =
L
we have
\( u=x_{p}+L \)
\[
\begin{align}
\int_{x_{p}}^{{x_{p}+L}}{\frac{du}{u^{2}}} &\Rightarrow\int_{x_{p}}^{{x_{p}+L}}{u^{-2}du}\Rightarrow\left.\frac{u^{-2+1}}{-2+1}\;\right|_{\;x_{p}}^{\;x_{p}+L}\Rightarrow\\
&\Rightarrow\left.\frac{u^{-1}}{-1}\;\right|_{\;x_{p}}^{\;x_{p}+L}\Rightarrow-\left.\frac{1}{u}\;\right|_{\;x_{p}}^{\;x_{p}+L}\Rightarrow\\
&\Rightarrow-\frac{1}{x_{p}+L}-\left(-\frac{1}{x_{p}}\right)\Rightarrow \frac{1}{x_{p}}-\frac{1}{x_{p}-L}\Rightarrow\\
&\Rightarrow\frac{x_{p}+L-x_{p}}{x_{p}(x_{p}+L)}\Rightarrow\frac{L}{x_{p}(x_{p}+L)}
\end{align}
\]
\[
\begin{gather}
\mathbf{E}=\frac{\lambda}{4\pi \epsilon_{0}}\frac{L}{x_{p}\;(x_{p}+L)}\;\mathbf{i} \tag{VIII}
\end{gather}
\]
The linear density of charges can be written
\[
\begin{gather}
\lambda=\frac{Q}{L} \tag{IX}
\end{gather}
\]
substituting the expression (IX) into expression (VIII)
\[
\mathbf{E}=\frac{1}{4\pi \epsilon_{0}}\frac{Q}{\cancel{L}}\frac{\cancel{L}}{x_{p}(x_{p}+L)}\;\mathbf{i}
\]
\[ \bbox[#FFCCCC,10px]
{\mathbf{E}=\frac{1}{4\pi \epsilon_{0}}\frac{Q}{x_{p}(x_{p}+L)}\;\mathbf{i}}
\]
and the magnitude of the electric field will be
\[ \bbox[#FFCCCC,10px]
{E=\frac{1}{4\pi \epsilon_{0}}\frac{Q}{x_{p}(x_{p}+L)}}
\]
Note: As the problem is one-dimensional, the vector value coincides with the scalar value
of the electric field.