The audible sounds by the human ear result from vibratory movements whose frequencies are between 16 Hz
and 20000 Hz. Knowing that at 20 °C, the speed of propagation of sound in water is 1450 m/s and in air
344 m/s. Calculate:
a) The wavelengths corresponding to the maximum and minimum frequencies in air and water;
b) The ratio between the wavelengths in water and air.
Problem data:
- Minimum audible frequency: fmin = 16 Hz;
- Maximum audible frequency: fmax = 20000 Hz;
- Speed of sound in water 20°C: vw = 1450 m/s;
- Speed of sound in air at 20 °C: va = 344 m/s;
- Ambient temperature: T = 20 °C.
Solution
a) We use the expression for the speed of sound as a function of frequency and wavelength
\[
\begin{gather}
\bbox[#99CCFF,10px]
{v=\lambda f}
\end{gather}
\]
for the wavelength, we write
\[
\begin{gather}
\lambda =\frac{v}{f}
\end{gather}
\]
For the air:
- Maximum wavelength (when the frequency is minimum)
\[
\begin{gather}
\lambda_{a max}=\frac{344}{16}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{\lambda_{a max}=21.5\;\text{m}}
\end{gather}
\]
- Minimum wavelength (when the frequency is maximum)
\[
\begin{gather}
\lambda_{a min}=\frac{344}{20000}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{\lambda_{a min}=0.0172\;\text{m}}
\end{gather}
\]
For the water:
- Maximum wavelength (when the frequency is minimum)
\[
\begin{gather}
\lambda_{w max}=\frac{1450}{16}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{\lambda_{w max}=90.625\;\text{m}}
\end{gather}
\]
- Minimum wavelength (when the frequency is maximum)
\[
\begin{gather}
\lambda_{w min}=\frac{1450}{20000}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{\lambda_{w min}=0.0725\;\text{m}}
\end{gather}
\]
b) Using the maximum wavelengths of water and air the ratio will be
\[
\begin{gather}
\frac{\lambda_{w max}}{\lambda_{a max}}=\frac{90.625}{21.5}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{\frac{\lambda_{a max}}{\lambda_{a max}}=4.2}
\end{gather}
\]
Note: If the minimum wavelengths were used, the result would be the same.