Solved Problem on Acoustics
advertisement   



The audible sounds by the human ear result from vibratory movements whose frequencies are between 16 Hz and 20000 Hz. Knowing that at 20 °C, the speed of propagation of sound in water is 1450 m/s and in air 344 m/s. Calculate:
a) The wavelengths corresponding to the maximum and minimum frequencies in air and water;
b) The ratio between the wavelengths in water and air.


Problem data:
  • Minimum audible frequency:    fmin = 16 Hz;
  • Maximum audible frequency:    fmax = 20000 Hz;
  • Speed of sound in water 20°C:    vw = 1450 m/s;
  • Speed of sound in air at 20 °C:    va = 344 m/s;
  • Ambient temperature:    T = 20 °C.
Solution

a) We use the expression for the speed of sound as a function of frequency and wavelength
\[ \begin{gather} \bbox[#99CCFF,10px] {v=\lambda f} \end{gather} \]
for the wavelength, we write
\[ \begin{gather} \lambda =\frac{v}{f} \end{gather} \]
For the air:
  • Maximum wavelength (when the frequency is minimum)
\[ \begin{gather} \lambda_{a max}=\frac{344}{16} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\lambda_{a max}=21.5\;\text{m}} \end{gather} \]
  • Minimum wavelength (when the frequency is maximum)
\[ \begin{gather} \lambda_{a min}=\frac{344}{20000} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\lambda_{a min}=0.0172\;\text{m}} \end{gather} \]
For the water:
  • Maximum wavelength (when the frequency is minimum)
\[ \begin{gather} \lambda_{w max}=\frac{1450}{16} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\lambda_{w max}=90.625\;\text{m}} \end{gather} \]
  • Minimum wavelength (when the frequency is maximum)
\[ \begin{gather} \lambda_{w min}=\frac{1450}{20000} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\lambda_{w min}=0.0725\;\text{m}} \end{gather} \]

b) Using the maximum wavelengths of water and air the ratio will be
\[ \begin{gather} \frac{\lambda_{w max}}{\lambda_{a max}}=\frac{90.625}{21.5} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\frac{\lambda_{a max}}{\lambda_{a max}}=4.2} \end{gather} \]

Note: If the minimum wavelengths were used, the result would be the same.
advertisement