A car travels with constant acceleration, initial speed
v0, and acceleration α.
a) Calculate the distance traveled by car at
n-th second (that is, between the instants
n-1
and
n);
b) For
v0 = 15 m/s and α = 1.2 m/s
2, calculate the distance traveled in
the first second and in the fifteenth second.
Problem data:
- Initial speed: v0;
- Acceleration: α.
Problem diagram:
We choose a reference frame pointing to the right,
Sn is the displacement of the car from
the origin to the
n-th second, and
Sn−1 is the displacement from the
origin to the previous second (Figure 1).
Solution
a) The equation for displacement as a function of time with constant acceleration is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{S=S_{0}+v_{0}t+\frac{a}{2}t^{2}} \tag{I}
\end{gather}
\]
Applying the expression (I) to the car displacement up to instant
t =
n−1
\[
S_{n-1}=S_{0}+v_{0}(n-1)+\frac{\alpha }{2}(n-1)^{2}
\]
From
Special Binomial Products
\[
(a-b)^{2}=a^{2}-2ab+b^{2}
\]
applying to the term
\( (n-1)^{2} \)
\[
\begin{gather}
S_{n-1}=S_{0}+v_{0}(n-1)+\frac{\alpha}{2}(n-1)^{2}\\[5pt]
S_{n-1}=S_{0}+v_{0}n-v_{0}+\frac{\alpha}{2}(n^{2}-2n+1)\\[5pt]
S_{n-1}=S_{0}+v_{0}n-v_{0}+\frac{\alpha}{2}n^{2}-\frac{\alpha }{2}2n+\frac{\alpha}{2}\\[5pt]
S_{n-1}=S_{0}+v_{0}n-v_{0}+\frac{\alpha }{2}n^{2}-\alpha
n+\frac{\alpha }{2} \tag{II}
\end{gather}
\]
Applying the expression (I) for instant
t =
n
\[
\begin{gather}
S_{n}=S_{0}+v_{0}n+\frac{\alpha }{2}n^{2} \tag{III}
\end{gather}
\]
We want the displacement only at the
n-th second, we have the condition.
\[
\Delta S=S_{n}-S_{n-1}
\]
subtracting the expression (II) from (III)
\[
\begin{gather}
\Delta S=S_{0}+v_{0}n+\frac{\alpha}{2}n^{2}-\left[S_{0}+v_{0}n-v_{0}+\frac{\alpha }{2}n^{2}-\alpha n+\frac{\alpha }{2}\right]\\
\Delta S=S_{0}+v_{0}n+\frac{\alpha}{2}n^{2}-S_{0}-v_{0}n+v_{0}-\frac{\alpha }{2}n^{2}+\alpha n-\frac{\alpha }{2}\\
\Delta S=v_{0}+\alpha n-\frac{\alpha}{2}
\end{gather}
\]
factoring α
\[ \bbox[#FFCCCC,10px]
{\Delta S=v_{0}+\alpha \left(n-\frac{1}{2}\right)}
\]
b) Using the expression obtained in the previous item and the data values
\[
\begin{gather}
\Delta S=15+1.2\times \left(1-\frac{1}{2}\right)\\
\Delta S=15+1.2\times \left(\frac{2-1}{2}\right)\\
\Delta S=15+1.2\times \frac{1}{2}\\
\Delta S=15+0.6
\end{gather}
\]
\[ \bbox[#FFCCCC,10px]
{\Delta S=15.6\;\text{m}}
\]
\[
\begin{gather}
\Delta S=15+1.2\times \left(15-\frac{1}{2}\right)\\
\Delta S=15+1.2\times \left(\frac{30-1}{2}\right)\\
\Delta S=15+1.2\times \frac{29}{2}\\
\Delta S=15+0.6\times 29\\
\Delta S=15+17.4
\end{gather}
\]
\[ \bbox[#FFCCCC,10px]
{\Delta S=32.4\;\text{m}}
\]
Note: In the first case, the car travels 15.6 m, this is also the displacement from the
initial instant to t = 1 s. In the second case, the car travels 32.4 m between t = 14 s and
t = 15 s, but this is not the point of the trajectory in which he has been since he left the origin.