A passenger is 5 meters away and runs to try to catch a train starting from rest with an acceleration of
2 m/s
2. What must be the passenger's minimum constant speed,
vp, to reach the
train?
Problem data:
- Distance of the passenger to the train: d = 5 m;
- Initial speed of the train: v0t = 0;
- Acceleration of the train: a = 2 m/s2.
Problem diagram:
This problem can be reduced to two-point masses representing the passenger and the train door. We choose a
reference frame at the point where the passenger is located. The initial position of the passenger is
S0p = 0 and the initial position of the train is
S0t = 8 m (Figure 1).
Solution
The passenger is running at a constant speed and is in
Uniform Rectilinear Motion, given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{S=S_0+v_0t}
\end{gather}
\]
\[
\begin{gather}
S_p=S_{0p}+v_pt\\[5pt]
S_p=0\;\mathrm m+v_pt\\[5pt]
S_p=v_pt \tag{I}
\end{gather}
\]
The train is accelerating constantly and is in
Uniformly Accelerated Rectilinear Motion, given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{S=S_0+v_0t+\frac{a}{2}t^2}
\end{gather}
\]
\[
\begin{gather}
S_t=S_{0t}+v_{0t}+\frac{a}{2}t^2\\[5pt]
S_t=5\;\mathrm m+0\;\mathrm{\frac{m}{s}}\times t+\frac{a}{2}t^2\\[5pt]
S_t=5\;\mathrm m+t^2 \tag{II}
\end{gather}
\]
For the passenger to reach the train door, we must impose the condition of equality between equations (I)
and (II)
\[
\begin{gather}
S_p=S_t\\[5pt]
v_pt=5\;\mathrm m+t^2\\[5pt]
t^2-v_pt+5\;\mathrm m=0
\end{gather}
\]
This is a
Quadratic Equation in
t.
Solution of the equation
\( t^2-v_pt+5=0 \)
\[
\begin{gather}
\Delta =b^2-4ac=v_p^2-4\times 1\;\mathrm{\frac{m}{s^2}}\times 5\;\mathrm m=v_p^2-20\;\mathrm{\frac{m^2}{s^2}}
\end{gather}
\]
\[
\begin{gather}
t=\frac{-b\pm \sqrt{\Delta \;}}{2a}=\frac{-v_p\pm\sqrt{v_p^2-20\;\mathrm{\frac{m^2}{s^2}}\;}}{2\times 1}
\end{gather}
\]
For the equation to have real roots, we must have
\( \Delta \geqslant 0\Rightarrow v_p^2-20\;\mathrm{\frac{m^2}{s^2}}\geqslant 0 \)
\[
\begin{gather}
v_p^2-20\;\mathrm{\frac{m^2}{s^2}}\geqslant 0\\[5pt]
v_p^2\geqslant 20\;\mathrm{\frac{m^2}{s^2}}\\[5pt]
v_p\geqslant \sqrt{20\;\mathrm{\frac{m^2}{s^2}}\;}
\end{gather}
\]
The minimum speed of the passenger to board the train will be
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{v_p\simeq 4.5\;\mathrm{m/s}}
\end{gather}
\]