An Atwood machine is arranged in such a way that the masses M1 and
M2 slide without friction over two inclined planes with angles of 30° and 60º
to the horizontal, rather than moving vertically. Assuming that the ropes that support the
masses M1 and M2 are parallel to the planes. Determine:
a) The ratio between M1 and M2 for the system to remain in
equilibrium;
b) Calculate the acceleration and tension force on the rope when the masses are equal, each at
5 kg.
Assume the acceleration due to gravity equal to 9.81 m/s2.
Problem data:
- Masses of blocks: M1=M2=5 kg;
- Acceleration due to gravity: g=9,81 m/s2.
Problem diagram:
We choose a direction for acceleration arbitrarily (Figure 1)
Solution
Drawing free-bodies diagrams, we have the forces that act in each block.
We choose a reference frame with the
x-axis parallel to the inclined plane and the same direction
of the acceleration. In this body act the gravitational force
\( {\vec F}_{g1} \),
the tension force on the rope
\( \vec{T} \),
and the normal reaction force
\( {\vec N}_{1} \)
(Figure 2-A).
The gravitational force can be decomposeed into two directions, one component is parallel to the
x-axis
\( {\vec F}_{g1P} \)
and the other component normal or perpendicular
\( {\vec F}_{g1N} \)
(Figure 2-B).
In the triangle on the left, the gravitational force
\( {\vec F}_{g1} \)
is perpendicular to the horizontal plane, it makes a 90° angle, the angle between the inclined plane
and the horizontal plane is given as 60°, as the sum of the interior angles of a triangle equals to 180°,
the angle α between the gravitational force
\( {\vec F}_{g1P} \)
and the parallel component
\( {\vec F}_{g1P} \)
should be
\[ 60°+90°+\alpha=180°\Rightarrow \alpha=180°-60°-90°\Rightarrow \alpha=30° \]
In the triangle on the right, the component of normal force
\( {\vec F}_{g1N} \)
makes with the inclined plane a 90° angle, then the angle β between the gravitational force
\( {\vec F}_{g1} \)
and the component of normal force
\( {\vec F}_{g1N} \)
should be
\[ 30°+\beta=90°\Rightarrow \beta=90°-30°\Rightarrow \beta=60° \]
they are complementary angles.
We draw the forces in a coordinate system
xy (Figure 2 -C), and we apply
Newton's Second Law
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\vec{F}=m\vec{a}} \tag{I}
\end{gather}
\]
As there is no motion in the
y direction, the normal reaction force
\( {\vec N}_{1} \)
and the component of gravitational force
\( {\vec F}_{g1N} \)
cancel out.
Direction
x:
\[
\begin{gather}
T-F_{gP}=M_{1}a \tag{II}
\end{gather}
\]
the component of gravitational force in the parallel direction is given by
\[
\begin{gather}
F_{gP}=F_{g1}\sin 60° \tag{III}
\end{gather}
\]
the gravitational force is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{F_{g}=mg} \tag{IV}
\end{gather}
\]
for mass
M1
\[
\begin{gather}
F_{g1}=M_{1}g \tag{V}
\end{gather}
\]
substituting the expression (V) into expression (III)
\[
\begin{gather}
F_{gP}=M_{1}g\sin60° \tag{VI}
\end{gather}
\]
substituting the expression (VI) into expression (II)
\[
\begin{gather}
T-M_{1}g\sin 60°=M_{1}a \tag{VII}
\end{gather}
\]
Likewise, we choose a reference frame with the
x-axis parallel to the inclined plane and the
same direction of the acceleration. In this body acts the gravitational force
\( {\vec{F}}_{g2} \),
the tension force
\( \vec{T} \),
and the normal reaction force
\( {\vec{N}}_{2} \)
(Figure 3-A).
Likewise, the gravitational force can be decomposed into two directions, a component parallel to
the
x-axis
\( {\vec F}_{g2P} \)
and the other component normal or perpendicular
\( {\vec F}_{g2N} \)
(Figure 3-B).
In this case, the angle between the gravitational force
\( {\vec F}_{g2} \)
and the component of normal force
\( {\vec F}_{g2N} \)
will be 30°.
Drawing the forces in a coordinate system
xy (Figure 3-C) and applying the expression
(I).
In the
y direction, there is no motion, the normal reaction force
\( {\vec N}_{2} \)
and the normal component of gravitational force
\( {\vec{F}}_{g2N} \)
cancel out.
Direction
x:
\[
\begin{gather}
F_{g2P}-T=M_{2}a \tag{VIII}
\end{gather}
\]
the component of gravitational force in the parallel direction is given by
\[
\begin{gather}
F_{g2P}=P_{2}\sin 30° \tag{IX}
\end{gather}
\]
using the express (IV) for the gravitational force of the mass
M2
\[
\begin{gather}
F_{2g}=M_{2}g \tag{X}
\end{gather}
\]
substituting the expression (X) into expression (IX)
\[
\begin{gather}
F_{g2P}=M_{2}g\sin30° \tag{XI}
\end{gather}
\]
substituting the expression (XI) into expression (VIII)
\[
\begin{gather}
M_{2}g\sin 30°-T=M_{2}a \tag{XII}
\end{gather}
\]
a) Equations (VII) and (XII) can be written as a system of two equations
\[
\left\{
\begin{matrix}
T-M_{1}g\sin 60°=M_{1}a\\
M_{2}g\sin 30°-T=M_{2}a
\end{matrix}
\right.
\]
Remenbering the
Trigonometry
\[
\begin{gather}
\sin 60°=\dfrac{\sqrt{3\;}}{2}\\
\sin 30°=\dfrac{1}{2}
\end{gather}
\]
\[
\left\{
\begin{matrix}
T-\dfrac{\sqrt{3\;}}{2}M_{1}g=M_{1}a\\
\dfrac{1}{2}M_{2}g-T=M_{2}a
\end{matrix}
\right. \tag{XIII}
\]
For the system to remain in equilibrium, we must have the sum of the forces equal to zero
\[ \bbox[#99CCFF,10px]
{\sum F=0}
\]
\[
\begin{gather}
\left\{
\begin{matrix}
T-\dfrac{\sqrt{3\;}}{2}M_{1}g=0\\
\dfrac{1}{2}M_{2}g-T=0
\end{matrix}
\right.
\\{\,}\\
\left\{
\begin{matrix}
\dfrac{\sqrt{3\;}}{2}M_{1}g=T\\
\dfrac{1}{2}M_{2}g=T
\end{matrix}
\right.
\end{gather}
\]
dividing the second equation by the first in the system
\[
\begin{gather}
\frac{\dfrac{1}{2}M_{2}g}{\dfrac{\sqrt{3\;}}{2}M_{1}g}=\frac{T}{T}\\[5pt]
\frac{\dfrac{1}{2}M_{2}g}{\dfrac{\sqrt{3\;}}{2}M_{1}g}=1\\[5pt]
\frac{M_{2}\cancel{g}}{M_{1}\cancel{g}}=\frac{\dfrac{\sqrt{3\;}}{2}}{\dfrac{1}{2}}\\[5pt]
\frac{M_{2}}{M_{1}}=\frac{\sqrt{3\;}}{\cancel{2}}\times \frac{\cancel{2}}{1}
\end{gather}
\]
\[ \bbox[#FFCCCC,10px]
{\frac{M_{2}}{M_{1}}=\sqrt{3\;}}
\]
b) To find the acceleration and tension force on the rope, as the masses are equal we do
M1=
M2=
M, and we substitute in the system of equations (XIII)
\[
\left\{
\begin{matrix}
T-\dfrac{\sqrt{3\;}}{2}Mg=Ma\\
\dfrac{1}{2}Mg-T=Ma
\end{matrix}
\right.
\]
This is a system of two equations with two variables,
a and
T, adding these two equations
\[
\begin{gather}
\frac{
\begin{aligned}
\cancel{T}-\dfrac{\sqrt{3\;}}{2}Mg=Ma\\
\text{(+)}\qquad \dfrac{1}{2}Mg-\cancel{T}=Ma
\end{aligned}
}
{-{\dfrac{\sqrt{3\;}}{2}\cancel{M}g}+\dfrac{1}{2}\cancel{M}g=\cancel{M}a+\cancel{M}a}\\
\frac{1}{2}g(\;-\sqrt{3\;}+1\;)=2a\\
a=\frac{g}{2\times 2}\times (-\sqrt{3\;}+1)\\
a=\frac{g}{4}\times (-\sqrt{3\;}+1)
\end{gather}
\]
substituting the given value for acceleration due to gravity and
\( \sqrt{3\;}\simeq 1.73 \)
\[
\begin{gather}
a=\frac{9.81}{4}\times (-1.73+1)\\
a=2.45\times (-0.73)\\
a=-1.79
\end{gather}
\]
the negative sign in acceleration indicates that the direction of motion will be opposite to that
shown in Figure 1
\[ \bbox[#FFCCCC,10px]
{a=1.79\ \text{m/s}^{2}}
\]
the actual direction of acceleration is shown in Figure 4.
Subtracting the system equations
\[
\begin{gather}
\frac{
\begin{aligned}
T-\dfrac{\sqrt{3\;}}{2}Mg=Ma\\
\text{(-)}\qquad \dfrac{1}{2}Mg-T=Ma
\end{aligned}
}
{2T-\dfrac{\sqrt{3\;}}{2}Mg-\dfrac{1}{2}Mg=Ma-Ma}\\
2T-\frac{\sqrt{3\;}}{2}Mg-\frac{1}{2}Mg=0\\
2T=\frac{\sqrt{3\;}}{2}Mg+\frac{1}{2}Mg\\
T=\frac{1}{2}\times \left(\frac{\sqrt{3\;}}{2}Mg+\frac{1}{2}Mg\right)
\end{gather}
\]
substituting the values of the problem
\[
\begin{gather}
T=\frac{1}{2}\times \left(\frac{1.73}{2}\times 5\times 9.81+\frac{1}{2}\times 5\times 9.81\right)\\
T=\frac{1}{2}\times \left(42.43+24.53\right)
\end{gather}
\]
\[ \bbox[#FFCCCC,10px]
{T=33.51\ \text{N}}
\]