A box of mass m is on a horizontal surface, the coefficient of kinetic friction between the box
and surface is μ. A force
\( \vec{F} \)
is applied making an angle α with the horizontal.
a) For what value of the angle α, the acceleration of the box is maximum?
b) For what values of α the box remains at rest?
Problem data:
- External force applied in the box: \( \vec{F} \);
- Box mass: m;
- Coefficient of kinetic friction: μ;
- Angle between the applied force and horizontal line: α.
Problem diagram:
Drawing a free-body diagram, we have the forces that act on the box.
- \( \vec{F} \): external force applied in the box;
- \( \vec{F}_{g} \): gravitational force;
- \( {\vec F}_{f} \): force of friction;
- \( \vec{N} \): normal reaction force.
Solution
Applying
Newton's Second Law
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\vec{F}=m\vec{a}} \tag{I}
\end{gather}
\]
Drawing the forces in a reference frame and decomposing the forces in the
x and
y directions
(Figure 2)
The component of the external force in direction
x is given by
\[
\begin{gather}
F_{x}=F\cos \alpha \tag{II}
\end{gather}
\]
the force of friction is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{F_{f}=\mu N} \tag{III}
\end{gather}
\]
substituting the expressions (II) and (III) into expression (I)
\[
\begin{gather}
F_{x} -F_{f}=ma_{x}\\
F\cos \alpha -\mu N=ma_{x}
\end{gather}
\]
where
ax=
a is the acceleration in the
x-direction
\[
\begin{gather}
F\cos \alpha -\mu N=ma \tag{IV}
\end{gather}
\]
The component of the external force in the direction
y is given by
\[
\begin{gather}
F_{y}=F\sin \alpha \tag{V}
\end{gather}
\]
the gravitational force is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{F_{g}=mg} \tag{VI}
\end{gather}
\]
substituting the expressions (V), (VI) and the normal reaction force
N into expression (I)
\[
\begin{gather}
F_{y} +N-F_{g}=ma_{y}\\
F\sin \alpha +N-mg=ma_{y}
\end{gather}
\]
As there is no motion in
y direction, we have
ay=0, and the equation above
reduces to
\[
\begin{gather}
F\sin\alpha +N-mg=0 \tag{VII}
\end{gather}
\]
Equations (II) and (III) can be written as a system of two equations with two variables,
N
and α
\[
\left\{
\begin{array}{l}
F\cos \alpha -\mu N=ma\\
F\sin\alpha +N-mg=0
\end{array}
\right.
\]
solving the second equation for
N
\[
N=mg-F\sin\alpha
\]
substituting this value in the first equation
\[
\begin{gather}
F\cos \alpha -\mu (mg-F\sin\alpha)=ma\\[5pt]
ma=F\cos \alpha -\mu (mg-F\sin\alpha)\\[5pt]
a=\frac{F\cos \alpha -\mu mg+\mu F\sin\alpha}{m}
\end{gather}
\]
factoring the force
F and canceling the mass
m in the numerator and denominator on the
right-hand side
\[
\begin{gather}
a=\frac{-\mu {\cancel{m}}g}{\cancel{m}}+\frac{F\cos \alpha +\mu F\sin\alpha }{m}\\
a=-\mu g+\frac{F}{m}(\cos \alpha +\mu \sin\alpha)
\end{gather}
\]
multiplying the numerator and the denominator of the terms in parentheses by
\( \frac{\sqrt{1+\mu ^{2}\;}}{\sqrt{1+\mu ^{2}\;}}=1 \)
(multiply by one does not change anything)
Note: If we consider one and μ as sides of a riht triangle, the hypotenuse will
be given by
\( h=\sqrt{1+\mu ^{2}\;} \)
(Figure 3), we can define the sine and cosine of the β angle as
\[
\begin{gather}
\sin\beta =\frac{1}{\sqrt{1+\mu ^{2}\;}} \tag{VIII-a} \\[10pt]
\cos \beta =\frac{\mu }{\sqrt{1+\mu ^{2}\;}} \tag{VIII-b}
\end{gather}
\]
\[
a=-\mu g+\frac{F}{m}(\cos \alpha +\mu \sin\alpha)\left(\frac{\sqrt{1+\mu ^{2}\;}}{\sqrt{1+\mu ^{2}\;}}\right)
\]
applying the distributive property to the denominator and leaving the numerator
\[
\begin{gather}
a=-\mu g+\frac{F\sqrt{1+\mu^{2}\;}}{m}\left(\frac{1}{\sqrt{1+\mu ^{2}\;}}\cos \alpha+\frac{\mu }{\sqrt{1+\mu ^{2}\;}}\sin\alpha \right) \tag{IX}
\end{gather}
\]
Substituting the sine (VIII-a) and cosine (VIII-b) above in the expression (V)
\[
a=-\mu g+\frac{F\sqrt{1+\mu ^{2}\;}}{m}\left(\sin\beta\cos \alpha +\cos \beta \sin\alpha \right)
\]
From
Trigonometry, the sine of a sum of arcs is given by
\[
\sin(x+y)=(\sin x\cos y+\sin y\cos x)
\]
u
applying this identity to the term in parentheses
\[
\begin{gather}
a=-\mu g+\frac{F\sqrt{1+\mu ^{2}\;}}{m}\sin(\alpha +\beta) \tag{X}
\end{gather}
\]
This is the expression for the acceleration of the box. Analyzing the result, we see that the maximum
value occurs when the sine is equal to 1, this happens when
\( \alpha +\beta =\frac{\pi }{2} \)
is the angle that produces the maximum acceleration, where α=α
max. In
Figure 4 we see angles α
max and β in a graph, the sum of these angles are
\( \frac{\pi }{2} \)
\[
\cos \alpha _{max}=\sin\beta
\]
substituting the value of the sin β defined in the expression (VIII-A)
\[
\cos \alpha _{max}=\frac{1}{\sqrt{1+\mu ^{2}\;}}
\]
\[ \bbox[#FFCCCC,10px]
{\alpha_{max}=\arccos\frac{1}{\sqrt{1+\mu ^{2}\;}}}
\]
b) For the box to remain at rest, we must have the acceleration equal to zero in the expression
(X), we have that the angle α
0 for which the box does not move will be
\[
\begin{gather}
0=-\mu g+\frac{F\sqrt{1+\mu^{2}\;}}{m}\sin(\alpha _{0}+\beta )\\
\frac{F\sqrt{1+\mu^{2}\;}}{m}\sin(\alpha _{0}+\beta )=\mu g\\
\sin(\alpha _{0}+\beta )=\mu g\frac{m}{F\sqrt{1+\mu^{2}\;}}\\
\alpha_{0}+\beta =\arcsin\left(\mu g\frac{m}{F\sqrt{1+\mu ^{2}\;}}\right)\\
\alpha_{0}=\arcsin\left(\mu g\frac{m}{F\sqrt{1+\mu ^{2}\;}}\right)-\beta
\end{gather}
\]
from the expression (VIII-A)
\[
\sin\beta =\frac{1}{\sqrt{1+\mu ^{2}\;}}\Rightarrow \beta=\arcsin\frac{1}{\sqrt{1+\mu ^{2}\;}}
\]
substituting above, the α
0 angle will be given by
\[ \bbox[#FFCCCC,10px]
{\alpha _{0}=\arcsin\left(\mu g\frac{m}{F\sqrt{1+\mu^{2}\;}}\right)-\arcsin\left(\frac{1}{\sqrt{1+\mu^{2}\;}}\right)}
\]