On an inclined plane of 30° to the horizontal, it slides without friction a mass m1
attached to another mass m2. The system is released from the rest, the mass
m2 rises 250 m in 20 s. Calculate the ratio m1/m2.
Assume g = 10 m/s2.
Problem data:
- Mass of block 1: m1;
- Angle of the inclined plane: θ = 30°;
- Mass of block 2: m2;
- Displacement of block 2: ΔS = 250 m;
- Initial peed: v0 = 0;
- Rise time interval: Δt = 20 s
- Acceleration due to gravity: g = 10 m/s2.
Problem diagram:
We choose the acceleration of the system in the direction of mass m1 descending the
plane and the mass m2 rising (Figure 1).
Solution
We draw a free-body diagram, and we have the forces that act in each of them.
Block 1 (Figure 2-A):
We choose a frame of reference with the
x-axis in the direction of the inclined plane and pointing
downward. In this body act the gravitational force of block 1
\( {\vec F}_{g1} \),
the normal reaction force of the plane on block 1
\( {\vec N}_{1} \),
and the tension force on rope
\( \vec{T} \).
The gravitational force
\( {\vec F}_{g1} \)
can be decomposed into two components, a component parallel to the
x-axis
\( {\vec F}_{g1P} \)
and the other component normal or perpendicular
\( {\vec F}_{g1N} \).
In the triangle on the left in Figure 2-B, the gravitational force is perpendicular to the horizontal plane,
makes a 90° angle, the angle between the inclined plane and the horizontal plane is given as 30°, as the sum
of the interior angles of a triangle equals to 180°, the angle α between the gravitational force and
the parallel component should be
\[
\alpha +30°+90°=180°\Rightarrow \alpha=180°-30°-90°\Rightarrow \alpha=60°
\]
In the triangle on the right, the normal component makes with the inclined plane a 90° angle, then the angle
β between the gravitational force and the normal component is
\[
\alpha+\beta=90° \Rightarrow \beta =90°-\alpha \Rightarrow 90°-60°\Rightarrow 30°
\]
We draw the forces in a coordinate system (Figure 2 -C), and we apply
Newton's Second Law
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\vec{F}=m\vec{a}} \tag{I}
\end{gather}
\]
As there is no movement in the
y direction the normal reaction force and the normal component of
gravitational force cancel.
Direction
x:
\[
\begin{gather}
F_{g1P}-T=m_{1}a \tag{II}
\end{gather}
\]
the component of gravitational force in the parallel direction is given by (Figure 2-C)
\[
\begin{gather}
F_{g1P}=F_{g1}\cos 60° \tag{III}
\end{gather}
\]
the gravitational force is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{F_{g}=mg} \tag{IV}
\end{gather}
\]
for block
m1 the gravitational force is given by
\[
\begin{gather}
F_{g1}=m_{1}g \tag{V}
\end{gather}
\]
substituting the expression (V) into expression (III)
\[
\begin{gather}
F_{g1P}=m_{1}g\cos 60° \tag{VI}
\end{gather}
\]
substituting the expression (VI) into expression (II)
\[
\begin{gather}
m_{1}g\cos 60°-T=m_{1}a \tag{VII}
\end{gather}
\]
Block 2 (Figure 3):
- \( {\vec F}_{g2} \): gravitational force of block 2;
- \( \vec{T} \): tension force on the rope.
We choose the positive direction upward, in the same direction of acceleration. In the horizontal direction,
no forces are acting on the block, in the vertical direction applying the expression (I)
\[
\begin{gather}
T-F_{g2}=m_{2}a \tag{VIII}
\end{gather}
\]
For block
m2 the gravitational force is given by
\[
\begin{gather}
F_{g2}=m_{2}g \tag{IX}
\end{gather}
\]
substituting the expression (IX) into expression (VIII)
\[
\begin{gather}
T-m_{2}g=m_{2}a \tag{X}
\end{gather}
\]
Adding the expressions (VII) and (X),, we have the acceleration of the system
\[
\frac{
\begin{matrix}
m_{1}g\cos 60°-\cancel{T}=m_{1}a\\
\text{(+)}\qquad\quad\;\cancel{T}-m_{2}g=m_{2}a \quad\;
\end{matrix}}
{m_{1}g\cos 60°-m_{2}g=m_{1}a+m_{2}a}
\]
factoring the acceleration due to gravity
g on the left-hand side of the equation and acceleration
a on the right-hand side
\[
\begin{gather}
g(m_{1}\cos 60°-m_{2})=a(m_{1}+m_{2})\\
a=g\left(\frac{m_{1}\cos 60°-m_{2}}{m_{1}+m_{2}}\right) \tag{XI}
\end{gather}
\]
From the
Kinematics, we use the equation of displacement as a function of time with constant
acceleration
\[ \bbox[#99CCFF,10px]
{S=S_{0}+V_{0}t+\frac{a}{2}t^{2}}
\]
\[
S-S_{0}=V_{0}t+\frac{a}{2}t^{2}
\]
with
\( \Delta S=S-S_{0} \)
and using the value of the acceleration of the expression (XI)
\[
\Delta S=V_{0}t+\frac{1}{2}g\left(\frac{m_{1}\cos 60°-m_{2}}{m_{1}+m_{2}}\right)t^{2}
\]
From the
Trigonometria
\[
\cos 60°=\dfrac{1}{2}
\]
Substituting the values given in the problem and with
\( \Delta t=t-t_{0}\Rightarrow 20=t-0\Rightarrow t=20\;\text{s, } \)
\( \Delta t=t-t_{0}\Rightarrow 20=t-0\Rightarrow t=20\;\text{s, } \)
\[
\begin{gather}
250=0\times 20+\frac{1}{2}\times 10\times \left(\frac{m_{1}\dfrac{1}{2}-m_{2}}{m_{1}+m_{2}}\right)\times 20^{2}\\
250=0+5\times \left(\frac{\dfrac{m_{1}-2m_{2}}{2}}{m_{1}+m_{2}}\right)\times 400\\
250=\left[\frac{m_{1}-2m_{2}}{2\left(m_{1}+m_{2}\right)}\right]\times 2000\\
\frac{250}{2000}=\frac{m_{1}-2m_{2}}{2m_{1}+2m_{2}}
\end{gather}
\]
on the left-hand side of the equation, we divide the numerator and the denominator by 250
\[
\begin{gather}
\frac{250:250}{2000:250}=\frac{m_{1}-2m_{2}}{2m_{1}+2m_{2}}\\
\frac{1}{8}=\frac{m_{1}-2m_{2}}{2m_{1}+2m_{2}}
\end{gather}
\]
applying a cross-multiplication
\[
\begin{gather}
2m_{1}+2m_{2}=8\times \left(m_{1}-2m_{2}\right)\\
2m_{1}+2m_{2}=8m_{1}-16m_{2}\\
2m_{2}+16m_{2}=8m_{1}-2m_{1}\\
18m_{2}=6m_{1}\\
\frac{m_{1}}{m_{2}}=\frac{18}{6}
\end{gather}
\]
\[ \bbox[#FFCCCC,10px]
{\frac{m_{1}}{m_{2}}=3}
\]