Find the equivalent resistance between points A and B of the circuit shown in the figure.
Solution
Let us redraw the circuit as follows to make it easier to see (Figure 1)
This type of circuit is solved using the technique called Y-Δ transform (also called Star-Delta) by
making the following modification to the circuit (Figure 2)
The resistor
Ra will be given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{R_{a}=\frac{R_{1}R_{2}}{R_{1}+R_{2}+R_{3}}}
\end{gather}
\]
\[
\begin{gather}
R_{a}=\frac{2RR}{2R+R+2R}\\[5pt]
R_{a}=\frac{2R^{2}}{5R}\\[5pt]
R_{a}=\frac{2}{5}R \tag{I}
\end{gather}
\]
The resistor
Rb will be given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{R_{b}=\frac{R_{1}R_{3}}{R_{1}+R_{2}+R_{3}}}
\end{gather}
\]
\[
\begin{gather}
R_{b}=\frac{2R2R}{2R+R+2R}\\[5pt]
R_{b}=\frac{4R^{2}}{5R}\\[5pt]
R_{b}=\frac{4}{5}R \tag{II}
\end{gather}
\]
The resistor
Rc will be given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{R_{c}=\frac{R_{2}R_{3}}{R_{1}+R_{2}+R_{3}}}
\end{gather}
\]
\[
\begin{gather}
R_{c}=\frac{R2R}{2R+R+2R}\\[5pt]
R_{c}=\frac{2R^{2}}{5R}\\[5pt]
R_{c}=\frac{2}{5}R \tag{III}
\end{gather}
\]
Using the values of (I), (II), and (III), the circuit to be solved becomes the following (Figure 3)
The two resistors between points
D and
E are in series, and the equivalent resistor is
given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{R_{eq}=\sum _{i=1}^{n}R_{i}}
\end{gather}
\]
the equivalent resistor
R4 between them will be
\[
\begin{gather}
R_{4}=\frac{4}{5}R+R
\end{gather}
\]
multiplying the numerator and denominator of the second term on the right-hand side of the equation by 5
\[
\begin{gather}
R_{4}=\frac{4}{5}R+\frac{5}{5}R\\[5pt]
R_{4}=\frac{9}{5}R
\end{gather}
\]
The two resistors between points
D and
F are in series, and the equivalent resistor
R5 between them will be
\[
\begin{gather}
R_{5}=\frac{2}{5}R+2R
\end{gather}
\]
multiplying the numerator and denominator of the second term on the right-hand side of the equation by 5
\[
\begin{gather}
R_{5}=\frac{2}{5}R+\frac{5}{5}.2R\\[5pt]
R_{5}=\frac{2}{5}R+\frac{10}{5}R\\[5pt]
R_{5}=\frac{12}{5}R
\end{gather}
\]
The circuit is represented in (Figure 4)
The two resistors obtained above are connected in parallel, and the equivalent resistor is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{R_{par}=\frac{R_{A}R_{B}}{R_{A}+R_{B}}}
\end{gather}
\]
the equivalent resistor
R6 between them will be
\[
\begin{gather}
R_{6}=\frac{R_{4}R_{5}}{R_{4}+R_{5}}\\[5pt]
R_{6}=\frac{\dfrac{9}{5}R \dfrac{12}{5}R}{\dfrac{9}{5}R+\dfrac{12}{5}R}\\[5pt]
R_{6}=\frac{\dfrac{108}{25}R^{2}}{\dfrac{21}{5}R}\\[5pt]
R_{6}=\frac{\cancelto{36}{108}}{\cancelto{5}{25}}R^{\cancel{2}}\frac{\cancelto{1}{5}}{\cancelto{7}{21}}\frac{1}{\cancel{R}}\\[5pt]
R_{6}=\frac{36}{5}\frac{1}{7}R\\[5pt]
R_{6}=\frac{36}{35}R
\end{gather}
\]
The circuit reduces to two resistors in series (Figure 5)
the equivalent resistance
Req of the circuit will be
\[
\begin{gather}
R_{eq}=\frac{2}{5}R+\frac{36}{35}R
\end{gather}
\]
multiplying the numerator and denominator of the first term on the right-hand side of the equation by 7
\[
\begin{gather}
R_{eq}=\frac{7}{7}.\frac{2}{5}R+\frac{36}{35}R\\[5pt]
R_{eq}=\frac{14}{35}R+\frac{36}{35}R\\[5pt]
R_{eq}=\frac{\cancelto{10}{50}}{\cancelto{7}{35}}R
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{R_{eq}=\frac{10}{7}R}
\end{gather}
\]