Solved Problem on Mesh Analysis
advertisement   



In the circuit below determine the currents in the branches and their true directions.




Problem Data:

Resistors:
  • R1 = 1 Ω;
  • R2 = 2 Ω;
  • R3 = 1 Ω;
  • R4 = 2 Ω;
  • R5 = 1 Ω;
  • R6 = 2 Ω;
Batteries:
  • E1 = 10 V;
  • E2 = 20 V;
  • E3 = 10 V;
  • E4 = 20 V;
Solution

First, to each loop of the circuit is randomly assigned a direction of current. The meshes ABGHA, BCFGB and CDEFC have, respectively, the currents i1, i2 and i3 in the clockwise direction (Figure 1).

Figure 1

Applying Kirchhoff's Mesh Law to mesh i1 from point A in the chosen direction, forgetting meshes i2 and i3 (Figure 2), we write

Figure 2
\[ \begin{gather} \bbox[#99CCFF,10px] {\sum_{n} V_{n}=0} \end{gather} \]
\[ \begin{gather} R_{1}i_{1}-E_{2}+R_{6}i_{1}-E_{1}=0 \end{gather} \]
substituting the values given in the problem
\[ \begin{gather} 1i_{1}-20+2i_{1}-10=0\\[5pt] 3i_{1}-30=0\\[5pt] 3i_{1}=30\\[5pt] i_{1}=\frac{30}{3}\\[5pt] i_{1}=10\;\text{A} \end{gather} \]
Applying Kirchhoff's Mesh Law to mesh i2 from point B in the chosen direction, forgetting meshes i1 and i3 (Figure 3)

Figure 3
\[ \begin{gather} R_{2}i_{2}+E_{3}+R_{5}i_{2}+E_{2}=0 \end{gather} \]
substituting the values
\[ \begin{gather} 2i_{2}+10+1i_{2}+20=0\\[5pt] 3i_{2}+30=0\\[5pt] 3i_{2}=-30\\[5pt] i_{2}=\frac{-30}{3}\\[5pt] i_{2}=-10\;\text{A} \end{gather} \]
Applying Kirchhoff's Mesh Law to mesh i3 from point C in the chosen direction, forgetting meshes i1 and i2 (Figure 4)

Figure 4
\[ \begin{gather} R_{3}i_{3}-E_{4}+R_{4}i_{3}-E_{3}=0 \end{gather} \]
substituting the values
\[ \begin{gather} 1i_{3}-20+2i_{3}-10=0\\[5pt] i_{3}+2i_{3}-30=0\\[5pt] 3i_{3}=30\\[5pt] i_{3}=\frac{30}{3}\\[5pt] i_{3}=10\;\text{A} \end{gather} \]
In branch BG will circulate the current i4 given by
\[ \begin{gather} i_{4}=i_{1}-i_{2}\\[5pt] i_{4}=10-(\;-10\;)\\[5pt] i_{4}=10+10\\[5pt] i_{4}=20\;\text{A} \end{gather} \]
The direction of the current i4 will be the same as current i1.
In the CF branch will circulate the current i5 given by
\[ \begin{gather} i_{5}=i_{3}-i_{2}\\[5pt] i_{5}=10-(\;-10\;)\\[5pt] i_{5}=10+10\\[5pt] i_{5}=20\;\text{A} \end{gather} \]
The direction of current i5 will be the same as current i3.
Since the current i2 is negative, its direction is contrary to the one chosen in Figure 1. The current values are i1=10 A, i2=10 A, i3=10 A, i4=20 A, and i5=20 A, and its directions are shown in Figure 5.

Figure 5
advertisement