In the circuit below determine the currents in the branches and their true directions.
Problem Data:
Resistors:
- R1 = 1 Ω;
- R2 = 2 Ω;
- R3 = 1 Ω;
- R4 = 2 Ω;
- R5 = 1 Ω;
- R6 = 2 Ω;
Batteries:
- E1 = 10 V;
- E2 = 20 V;
- E3 = 10 V;
- E4 = 20 V;
Solution
First, to each loop of the circuit is randomly assigned a direction of current. The meshes
ABGHA,
BCFGB and
CDEFC have, respectively, the currents
i1,
i2 and
i3 in the clockwise direction (Figure 1).
Applying
Kirchhoff's Mesh Law to mesh
i1 from point
A in the chosen direction,
forgetting meshes
i2 and
i3 (Figure 2), we write
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\sum_{n} V_{n}=0}
\end{gather}
\]
\[
\begin{gather}
R_{1}i_{1}-E_{2}+R_{6}i_{1}-E_{1}=0
\end{gather}
\]
substituting the values given in the problem
\[
\begin{gather}
1i_{1}-20+2i_{1}-10=0\\[5pt]
3i_{1}-30=0\\[5pt]
3i_{1}=30\\[5pt]
i_{1}=\frac{30}{3}\\[5pt]
i_{1}=10\;\text{A}
\end{gather}
\]
Applying
Kirchhoff's Mesh Law to mesh
i2 from point
B in the chosen direction,
forgetting meshes
i1 and
i3 (Figure 3)
\[
\begin{gather}
R_{2}i_{2}+E_{3}+R_{5}i_{2}+E_{2}=0
\end{gather}
\]
substituting the values
\[
\begin{gather}
2i_{2}+10+1i_{2}+20=0\\[5pt]
3i_{2}+30=0\\[5pt]
3i_{2}=-30\\[5pt]
i_{2}=\frac{-30}{3}\\[5pt]
i_{2}=-10\;\text{A}
\end{gather}
\]
Applying
Kirchhoff's Mesh Law to mesh
i3 from point
C in the chosen direction,
forgetting meshes
i1 and
i2 (Figure 4)
\[
\begin{gather}
R_{3}i_{3}-E_{4}+R_{4}i_{3}-E_{3}=0
\end{gather}
\]
substituting the values
\[
\begin{gather}
1i_{3}-20+2i_{3}-10=0\\[5pt]
i_{3}+2i_{3}-30=0\\[5pt]
3i_{3}=30\\[5pt]
i_{3}=\frac{30}{3}\\[5pt]
i_{3}=10\;\text{A}
\end{gather}
\]
In branch
BG will circulate the current
i4 given by
\[
\begin{gather}
i_{4}=i_{1}-i_{2}\\[5pt]
i_{4}=10-(\;-10\;)\\[5pt]
i_{4}=10+10\\[5pt]
i_{4}=20\;\text{A}
\end{gather}
\]
The direction of the current
i4 will be the same as current
i1.
In the
CF branch will circulate the current
i5 given by
\[
\begin{gather}
i_{5}=i_{3}-i_{2}\\[5pt]
i_{5}=10-(\;-10\;)\\[5pt]
i_{5}=10+10\\[5pt]
i_{5}=20\;\text{A}
\end{gather}
\]
The direction of current
i5 will be the same as current
i3.
Since the current
i2 is negative, its direction is contrary to the one chosen in Figure 1.
The current values are
i1=10 A,
i2=10 A,
i3=10 A,
i4=20 A,
and
i5=20 A,
and its directions are shown in Figure 5.