Two batteries whose
emf and internal resistances are respectively
E1=1.5 V,
E2=9 V, and
r1=1 Ω,
r2=2.2 Ω are connected
by wires of negligible resistance to a resistor
R=4.7 kΩ. Find the currents in the branches of
the circuit.
Problem data:
Batteries internal resistances:
External resistance:
emf of the batteries:
Solution
First, at each circuit loop, we arbitrarily assign a direction of the current. In the
ABEFA loop,
we have the current
i1 clockwise, and in the
BCDEB loop, we have the current
i2 counterclockwise (Figure 1).
Using the
Mesh Analysis to the mesh
i1, from point
A in the chosen direction,
forgetting the mesh
i2 (Figure 2)
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\sum_{n} V_{n}=0}
\end{gather}
\]
\[
\begin{gather}
R(i_{1}+i_{2})+r_{1}i_{1}-E_{1}=0
\end{gather}
\]
substituting the values of the problem
\[
\begin{gather}
4700(i_{1}+i_{2})+1i_{1}-1.5=0\\[5pt]
4700i_{1}+4700i_{2}+i_{1}=1.5 \\[5pt]
{4701i_{1}+4700i_{2}=1.5 \tag{I}}
\end{gather}
\]
Forgetting the mesh
i1 and using the
Mesh Analysis to the mesh
i2, as was
done above, we have for Figure 3, from point
B
\[
\begin{gather}
R(i_{1}+i_{2})+r_{2}i_{2}-E_{2}=0
\end{gather}
\]
substituting the values of the problem
\[
\begin{gather}
4700(i_{1}+i_{2})+2.2i_{2}-9=0\\[5pt]
4700i_{1}+4700i_{2}+2.2i_{2}=9\\[5pt]
{4700i_{1}+4702.2i_{2}=9 \tag{II}}
\end{gather}
\]
Equations (I) and (II) can be written as a system of linear equations with two unknowns (
i1 and
i2)
\[
\left\{
\begin{array}{l}
\;4701i_{1}+4700i_{2}=1.5\\
\;4700i_{1}+4702.2i_{2}=9
\end{array}
\right.
\]
solving the first equation for
i2
\[
\begin{gather}
i_{2}=\frac{1.5-4701i_{1}}{4700} \tag{III}
\end{gather}
\]
substituting this value in the second equation
\[
\begin{gather}
4700i_{1}+4702.2 \times \left(\;\frac{1.5-4701i_{1}}{4700}\;\right)=9
\end{gather}
\]
multiplying both sides of the equation by 4700
\[
\begin{gather}
4700 \times 4700i_{1}+4700 \times 4702.2 \times \left(\;\frac{1.5-4701i_{1}}{4700}\;\right)=4700 \times 9\\[5pt]
22090000i_{1}+\cancel{{4700}} \times 4702.2 \times \left(\;\frac{1.5-4701i_{1}}{\cancel{{4700}}}\;\right)=4700 \times 9\\[5pt]
22090000i_{1}+4702.2 \times 1.5-4702.2 \times 4701i_{1}=42300\\[5pt]
22090000i_{1}+7053.3-2210542.2i_{1}=42300\\[5pt]
-15042.2i_{1}=42300-7053.3\\[5pt]
-15042.2i_{1}=35246.7\\[5pt]
i_{1}=\frac{35246.7}{-15042.2}\\[5pt]
i_{1}=-2.34319\;\text{A}
\end{gather}
\]
Substituting this value into expression (III)
\[
\begin{gather}
i_{2}=\frac{1.5-4701 \times (\;-2.34319\;)}{4700}\\[5pt]
i_{2}=\frac{1.5+11015.33619}{4700}\\[5pt]
i_{2}=\frac{11016.83619}{4700}\\[5pt]
i_{2}=2.34401\;\text{A}
\end{gather}
\]
In the branch
BE the current
i3 is
\[
\begin{gather}
i_{3}=i_{1}+i_{2}\\[5pt]
i_{3}=-2.34319+2.34401\\[5pt]
i_{3}=0.00082=0.82.10^{-3}=0.82\;\text{mA}
\end{gather}
\]
The direction of the current
i3 will be the same as the current
i2 (the
highest value).
Since the value of current
i2 is negative, this means that its real direction is opposite to that
chosen in Figure 1. The current values are
i1=2.3432 A,
i2=2.3440 A,
and
i3=0.82 mA,
and their directions are shown in Figure 4.