Two batteries whose
emf and internal resistances are respectively
E1=1.5 V,
E2=9 V, and
r1=1 Ω,
r2=2.2 Ω are connected
by wires of negligible resistance to a resistor
R=4.7 kΩ. Find the currents in the branches of
the circuit.
Problem data:
Batteries internal resistances:
External resistance:
emf of the batteries:
Solution
First, to each branch of the circuit, we arbitrarily choose a direction of the current. In the
EFAB
branch we have the current
i1 clockwise, in the branch
BE the current
i3 from
B to
E and in the branch
EDCB the current
i2 in the counterclockwise direction. Second, for each loop of the circuit, we assign a
direction, also arbitrarily, to traverse the mesh. The α-mesh (
ABEFA) clockwise and β-mesh
(
BCDEB) also clockwise. We see all these elements in Figure 1.
- Using Kirchhoff's First Law
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\sum_{n} i_{n}=0}
\end{gather}
\]
The currents
i1 and
i2 flow into node
B and the current
i3 flows out
\[
\begin{gather}
i_{3}=i_{1}+i_{2} \tag{I}
\end{gather}
\]
- Using Kirchhoff's Second Law
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\sum_{n} V_{n}=0}
\end{gather}
\]
For the α-mesh from point
A, in the chosen direction, forgetting the β-mesh (Figure 2)
\[
\begin{gather}
R i_{3}+r_{1} i_{1}-E_{1}=0 \tag{II}
\end{gather}
\]
substituting the values of the problem
\[
\begin{gather}
4700i_{3}+1i_{1}-1.5=0\\[5pt]
4700i_{3}+i_{1}=1.5 \tag{III}
\end{gather}
\]
For the β-mesh from point
B, in the chosen direction, forgetting the α-mesh, (Figure 3)
\[
\begin{gather}
E_{2}-r_{2}i_{2}-Ri_{3}=0 \tag{IV}
\end{gather}
\]
substituting the values
\[
\begin{gather}
9-2.2i_{2}-4700i_{3}=0\\[5pt]
2.2i_{2}+4700i_{3}=9 \tag{V}
\end{gather}
\]
Equations (I), (III) and (V) can be written as a system of linear equations with three variables
(
i1,
i2, and
i3)
\[
\left\{
\begin{array}{l}
\;i_{3}=i_{1}+i_{2}\\
\;4700i_{3}+i_{1}=1.5\\
\;2.2i_{2}+4700i_{3}=9
\end{array}
\right.
\]
solving the second equation for
i1
\[
\begin{gather}
i_{1}=1.5-4700i_{3} \tag{VI}
\end{gather}
\]
solving the third equation for
i2
\[
\begin{gather}
i_{2}=\frac{9-4700i_{3}}{2.2} \tag{VII}
\end{gather}
\]
substituting expressions (VI) and (VII) in the first equation
\[
\begin{gather}
i_{3}=1.5-4700i_{3}+\frac{9-4700i_{3}}{2.2}
\end{gather}
\]
multiplying both sides of equality by 2.2
\[
\begin{gather}
2.2i_{3}=2.2 \times \left(\;1.5-4700i_{3}+\frac{9-4700i_{3}}{2.2}\;\right)\\[5pt]
2.2i_{3}=2.2 \times 1.5-2.2 \times 4700i_{3}+{\cancel{2.2}} \times \frac{9-4700i_{3}}{\cancel{2.2}}\\[5pt]
2.2i_{3}=3.3-10340i_{3}+9-4700i_{3}\\[5pt]
2.2i_{3}=12.3-15040i_{3}\\[5pt]
2.2i_{3}+15040i_{3}=12.3\\[5pt]
15042.2i_{3}=12.3\\[5pt]
i_{3}=\frac{12.3}{15042.2}\\[5pt]
i_{3}=8.1770 \times 10^{-4}=0.81770 \times 10^{-3}\simeq 0.82\;\text{mA}
\end{gather}
\]
substituting the value found above in expressions (VI) and (VII) we find
i1 and
i2 respectively
\[
\begin{gather}
i_{1}=1.5-4700 \times 0.00081770\\[5pt]
i_{1}=1.5-3.8432\\[5pt]
i_{1}=-2.3432\;\text{A}
\end{gather}
\]
\[
\begin{gather}
i_{2}=\frac{9-4700 \times 0.00081770}{2.2}\\[5pt]
i_{2}=\frac{9-3.8432}{2.2}\\[5pt]
i_{2}=\frac{5.1568}{2.2}\\[5pt]
i_{2}=2.3440\;\text{A}
\end{gather}
\]
Since the value of current
i1 is negative, this means that its true direction is opposite
to that chosen in Figure 1. The currents values are
i1=2.3432 A,
i2=2.3440 A,
and
i3=0.82 mA,
and its directions are shown in Figure 4.