Determine the electric field of a dipole at the points along the straight line joining the two charges of
the electric dipole. Check the solution for points far from the center of the dipole.
Problem diagram:
We choose a reference frame at the central point, 0, between the two charges of the dipole, and
x is
the distance from the center of the dipole to the point
P, where we want to calculate the electric
field (Figure 1).
The distance from charge +
q to point
P isé
\( r=x-d \)
and the distance from charge −
q to point
P is
\( r=x+d \).
Since charge +
q is closer to point
P, it will produce a stronger field than charge
−
q.
Solution
The magnitude of the electric field of each charge is calculated by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{E=k_{0}\frac{q}{r^{2}}}
\end{gather}
\]
The resultant electric field will be given by
\[
\begin{gather}
E=E_{+}-E_{-}\\[5pt]
E=k_{0}\frac{q}{(x-d)^{2}}-k_{0}\frac{q}{(x+d)^{2}}\\[5pt]
E=k_{0}q\left[\frac{(x+d)^{2}}{(x-d)^{2}}-\frac{(x-d)^{2}}{(x+d)^{2}}\right]
\end{gather}
\]
Terms in the numerator are in the form of
Special Binomial Products
\[
\begin{gather}
(a+b)^{2}=a^{2}+2ab+b^{2}
\end{gather}
\]
\[
\begin{gather}
(a-b)^{2}=a^{2}-2ab+b^{2}
\end{gather}
\]
\[
\begin{gather}
E=k_{0}q\left[\frac{x^{2}+2xd+d^{2}-(x^{2}-2xd+d^{2})}{(x-d)^{2}(x+d)^{2}}\right]\\[5pt]
E=k_{0}q\left[\frac{x^{2}+2xd+d^{2}-x^{2}+2xd-d^{2}}{(x-d)^{2}(x+d)^{2}}\right]
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{E=\frac{4k_{0}qxd}{(x-d)^{2}(x+d)^{2}}}
\end{gather}
\]
For points far from the center of the dipole we have,
x≫
d, we can neglect the term in
d in the
denominator and the solution will be
\[
\begin{gather}
E=\frac{4k_{0}q\cancel{x}d}{x^{\cancel{2}}x^{2}}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{E=\frac{4k_{0}qd}{x^{3}}}
\end{gather}
\]