Solved Problem on Coulomb's Law
advertisement   



Two equal spheres, charged with electric charges q1 and q2, repel each other with a force of magnitude 2.0×10−3 N when the distance between them is d. Next, the spheres are placed in contact and separated from \( \dfrac{d}{2} \). Under these new conditions, the repulsive force becomes 9.0×10−3 N. Determine the ratio. \( \dfrac{q_{1}}{q_{2}} \).


Problem data:
  • Charge of sphere 1:    q1;
  • Charge of sphere 2:    q2;
  • Initial distance between spheres:    d;
  • Initial magnitude of the force between the spheres:    Fi = 2.0×10−3 N;
  • Final distance between spheres:    \( \dfrac{d}{2} \);
  • Final magnitude of the force between the spheres:    Ff = 9.0×10−3 N;
  • Coulomb constant:    k.

Problem diagram:

Initially, the spheres are separated by a distance d, and a force Fi acts on them. Then the spheres are placed in contact, and the total charge of the spheres will be distributed equally by the two spheres (Figure 1).

Figure 1

Finally, the spheres are placed at a distance \( \dfrac{d}{2} \), and a force Ff acts on them.

Solution
\[ \begin{gather} \bbox[#99CCFF,10px] {F_{E}=k_{0}\frac{|Q|\;|q|}{r^{2}}} \tag{I} \end{gather} \]
Applying expression (I) to the initial situation
\[ \begin{gather} F_{i}=k\frac{|q_{1}|\;|q_{2}|}{d^{2}}\\[5pt] 2.0\times 10^{-3}=k\frac{q_{1}q_{2}}{d^{2}} \tag{II} \end{gather} \]
When the spheres are brought into contact, their charges are distributed equally over the two spheres, and their final charge will be
\[ \begin{gather} q_{f}=\frac{q_{1}+q_{2}}{2} \end{gather} \]
Applying expression (I) to the final situation
\[ \begin{gather} F_{f}=k\frac{|q_{f}|\;|q_{f}|}{r^{2}}\\[5pt] 9.0\times 10^{-3}=k\frac{\left(\dfrac{q_{1}+q_{2}}{2}\right)\left(\dfrac{q_{1}+q_{2}}{2}\right)}{\left(\dfrac{d}{2}\right)^{2}}\\[5pt] 9.0\times 10^{-3}=k\frac{\dfrac{\left(q_{1}+q_{2}\right)^{2}}{\cancel{4}}}{\dfrac{d^{2}}{\cancel{4}}}\\[5pt] 9.0\times 10^{-3}=k\frac{\left(q_{1}+q_{2}\right)^{2}}{d^{2}} \tag{III} \end{gather} \]
Dividing expression (II) by expression (III)
\[ \begin{gather} \frac{2.0\times 10^{-3}}{9.0\times 10^{-3}}=\frac{\cancel{k}\dfrac{q_{1}q_{2}}{\cancel{d^{2}}}}{\cancel{k}\dfrac{\left(q_{1}+q_{2}\right)^{2}}{\cancel{d^{2}}}}\\[5pt] \frac{2.0}{9.0}=\frac{q_{1}q_{2}}{\left(q_{1}+q_{2}\right)^{2}} \end{gather} \]

From Special Binomial Products    \( (a+b)^{2}=a^{2}+2ab+b^{2} . \)
\[ (a+b)^{2}=a^{2}+2ab+b^{2} \]

Applying this Special Binomial Product to the denominator on the right-hand side of the equation
\[ \begin{gather} \frac{2.0}{9.0}=\frac{q_{1}q_{2}}{\left(q_{1}^{2}+2q_{1}q_{2}+q_{2}^{2}\right)}\\[5pt] 2.0\left(q_{1}^{2}+2q_{1}q_{2}+q_{2}^{2}\right)=9.0q_{1}q_{2}\\[5pt] 2.0q_{1}^{2}+4.0q_{1}q_{2}+2.0q_{2}^{2}=9.0q_{1}q_{2}\\[5pt] 2.0q_{1}^{2}+2.0q_{2}^{2}=9.0q_{1}q_{2}-4.0q_{1}q_{2}\\[5pt] 2.0q_{1}^{2}+2.0q_{2}^{2}=5.0q_{1}q_{2}\\[5pt] 2.0\left(q_{1}^{2}+q_{2}^{2}\right)=5.0q_{1}q_{2}\\[5pt] \frac{q_{1}^{\cancel{2}}}{\cancel{q_{1}}q_{2}}+\frac{q_{2}^{\cancel{2}}}{q_{1}\cancel{q_{2}}}=\frac{5.0}{2.0}\\[5pt] \frac{q_{1}}{q_{2}}+\frac{q_{2}}{q_{1}}=\frac{5.0}{2.0}\\[5pt] \frac{q_{1}}{q_{2}}+\frac{q_{2}}{q_{1}}-\frac{5.0}{2.0}=0 \end{gather} \]
setting the definition   \( x\equiv \dfrac{q_{1}}{q_{2}}\Rightarrow \dfrac{1}{x}\equiv\dfrac{q_{2}}{q_{1}} \)
\[ \begin{gather} x+\frac{1}{x}-\frac{5.0}{2.0}=0 \end{gather} \]
multiplying the equation by 2x
\[ \begin{gather} \qquad\qquad\quad x+\frac{1}{x}-\frac{5}{2}=0\qquad (\times2x)\\[5pt] 2 x\times x+2 \cancel{x}\times \frac{1}{\cancel{x}}-\cancel{2} x\times \frac{5}{\cancel{2}}=0\\[5pt] 2x^{2}+2-5x=0\\[5pt] 2x^{2}-5x+2=0 \end{gather} \]

Solution of the equation    \( 2x^{2}-5x+2=0 \)
\[ \begin{gather} \Delta=b^{2}-4ac=(-5)^{2}-4\times 2\times 2=25-16=9\\[10pt] x=\frac{-b\pm \sqrt{\Delta\;}}{2a}=\frac{-(-5)\pm \sqrt{9\;}}{2\times 2}=\frac{5\pm 3}{4} \end{gather} \]
the two roots of the equation are
\[ \begin{gather} x_{1}=2 \qquad \mathrm{ou} \qquad x_{2}=\frac{1}{2} \end{gather} \]

We have two possible solutions
\[ \begin{gather} \bbox[#FFCCCC,10px] {\frac{q_{1}}{q_{2}}=2} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\frac{q_{1}}{q_{2}}=\frac{1}{2}} \end{gather} \]

Note: The problem does not provide the values of the charges or which one has the highest value. The first solution   \( \dfrac{q_{1}}{q_{2}}=2\Rightarrow q_{1}=2q_{2} \)   gives us that the first sphere is charged with a charge that is 2 times greater than the charge on the second sphere. The second solution   \( \dfrac{q_{1}}{q_{2}}=\frac{1}{2}\Rightarrow q_{2}=2q_{1} \)   gives us that the second sphere is charged with a charge that is 2 times greater than the charge on the first sphere. The solution to the problem contemplates all the possibilities that correspond to the given situation.
advertisement