Find the equivalent capacitance between points A and B of the circuit represented in the figure.
Solution
Let's redesign the circuit as follows to facilitate viewing (Figure 1)
This type of circuit is solved using the technique called YΔ transform (or star-delta
transform), replacing the capacitors in the circuit (Figure 2)
Ca capacitor will be given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{C_a=\frac{C_1 C_2+C_1 C_3+C_2 C_3}{C_3}}
\end{gather}
\]
\[
\begin{gather}
C_a=\frac{2C\,C+2C\,2C+C\,2C}{2C}\\[5pt]
C_a=\frac{2C^2+4C^2+2C^2}{2C}\\[5pt]
C_a=\frac{\cancelto{4}{8}C^{\cancel 2}}{\cancel 2\cancel C}\\[5pt]
C_a=4C \tag{I}
\end{gather}
\]
Cb capacitor will be given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{C_b=\frac{C_1 C_2+C_1 C_3+C_2 C_3}{C_2}}
\end{gather}
\]
\[
\begin{gather}
C_b=\frac{2C\,C+2C\,2C+C\,2C}{C}\\[5pt]
C_b=\frac{2C^2+4C^2+2C^2}{C}\\[5pt]
C_b=\frac{8C^{\cancel 2}}{\cancel C}\\[5pt]
C_b=8C \tag{II}
\end{gather}
\]
Cc capacitor will be given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{C_c=\frac{C_1 C_2+C_1 C_3+C_2 C_3}{C_1}}
\end{gather}
\]
\[
\begin{gather}
C_c=\frac{2C\,C+2C\,2C+C\,2C}{2C}\\[5pt]
C_c=\frac{2C^2+4C^2+2C^2}{2C}\\[5pt]
C_c=\frac{\cancelto{4}{8}C^{\cancel 2}}{\cancel 2\cancel C}\\[5pt]
C_c=4C \tag{III}
\end{gather}
\]
Then using the values (I), (II), and (III), the circuit to be solved becomes the following (Figure 3)
The two capacitors between points
D and
E,
Cb and
C, are in
series, the
C4 equivalent capacitance is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{C_{eq}=\frac{C_A C_B}{C_A+C_B}} \tag{IV}
\end{gather}
\]
\[
\begin{gather}
C_4=\frac{C_b\,C}{C_b+C}\\[5pt]
C_4=\frac{8C\,C}{8C+C}\\[5pt]
C_4=\frac{8C^{\cancel 2}}{9\cancel C}\\[5pt]
C_4=\frac{8}{9}C
\end{gather}
\]
The two capacitors between points
D and
F,
Cc and 2
C are in
series, applying the expression (IV) the equivalent capacitance
C5 between them
will be
\[
\begin{gather}
C_5=\frac{C_c\,2C}{C_c+2C}\\[5pt]
C_5=\frac{4 C\,2C}{4C+2C}\\[5pt]
C_5=\frac{\cancelto{4}8C^{\cancel{2}}}{\cancelto{3}6\cancel{C}}\\[5pt]
C_5=\frac{4}{3}C
\end{gather}
\]
The circuit can be represented as (Figure 4)
The two capacitors obtained above are connected in parallel, the equivalent capacitance is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{C_{eq}=\sum_{i=1}^{n}C_{i}}
\end{gather}
\]
the equivalent capacitance
C6 will be
\[
\begin{gather}
C_6=\frac{8}{9}C+\frac{4}{3}C
\end{gather}
\]
multiplying the numerator and denominator of the second term on the right-hand side by 3, we obtain
\[
\begin{gather}
C_6=\frac{8}{9}C+\frac{3}{3}\times\frac{4}{3}C\\[5pt]
C_6=\frac{8}{9}C+\frac{12}{9}C\\[5pt]
C_6=\frac{20}{9}C
\end{gather}
\]
The circuit becomes two series capacitors (Figure 5)
The equivalent capacitance
Ceq of the circuit
\[
\begin{gather}
C_{eq}=\frac{4C\times\dfrac{20}{9}C}{4C+\dfrac{20}{9}C}
\end{gather}
\]
In the denominator, we multiply the numerator and the denominator of the first term by 9
\[
\begin{gather}
C_{eq}=\frac{4 C\times\dfrac{20}{9}C}{\dfrac{9}{9}\times 4C+\dfrac{20}{9}C}\\[5pt]
C_{eq}=\frac{\dfrac{80}{9}C^2 }{\dfrac{36}{9}C+\dfrac{20}{9}C}\\[5pt]
C_{eq}=\frac{\dfrac{80}{\cancel 9}C^{\cancel 2}}{\dfrac{56}{\cancel 9}\cancel C}\\[5pt]
C_{eq}=\frac{\cancelto{10}{80}}{\cancelto{7}{56}}C
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{C_{eq}=\frac{10}{7}C}
\end{gather}
\]