The average coefficient of linear expansion of iron is equal to 0.0000117 °C
−1. How much
does it increase the temperature of an iron block so that its volume increases from 1%?
Problem data:
- Coefficient of linear expansion of iron: α = 0.0000117 °C−1;
- Change in volume: ΔV = 1%.
Problem diagram:
Solution
Volume change will be 1%
\[
\begin{gather}
\Delta V=1V_{0}\\
\Delta V=\frac{1}{100}V_{0}\\
\Delta V=0.01V_{0}
\end{gather}
\]
The problem gives the coefficient of linear expansion of the material, and for the calculation of the
volume increase, we need the coefficient of volumetric expansion.
\[ \bbox[#99CCFF,10px]
{\gamma =3\alpha}
\]
\[
\begin{gather}
\gamma =3\times 0.0000117\\
\gamma =0.0000351\\
\gamma=3.51\times 10^{-5}\;\text{°C}^{-1}
\end{gather}
\]
The final volume is given by
\[ \bbox[#99CCFF,10px]
{\Delta V=\gamma V_{0}\Delta t}
\]
substituting the problem data, we find the temperature variation
\[
\begin{gather}
0.01\cancel{V_{0}}=3.51\times 10^{-5}\cancel{V_{0}}\Delta t\\
0.01=3.51\times 10^{-5}\Delta t\\
\Delta t=\frac{0.01}{3.51\times 10^{-5}}
\end{gather}
\]
\[ \bbox[#FFCCCC,10px]
{\Delta t\approx 285\;\text{°C}}
\]