A square aluminum plate has an area of 2 m
2 at 50 °C, if the plate is cooled to 0 °C its area
decreases from 0.0044 m
2. Find the coefficients of surface and linear expansion of aluminum.
Problem data:
- Initial area of the plate: A0 = 2 m2;
- Surface area change: Δ A = −0,0044 m2;
- Initial plate temperature: ti = 50 °C;
- Final plate temperature: tf = 0 °C.
Problem diagram:
As the plate decreases, upon cooling, the signal of the surface area change is negative.
Solution
Writing the equation of area thermal expansion, we have
\[ \bbox[#99CCFF,10px]
{\Delta A=\beta A_{0}\Delta t}
\]
\[
\begin{gather}
\Delta A=\beta A_{0}(\;t_{\text{f}}-t_{\text{i}}\;)\\
-0.0044=\beta \times 2 \times (\;0-50\;)\\
-0,0044=-100\beta \\
\beta =\frac{-0.0044}{-100}\\
\beta =\frac{4.4 \times 10^{-3}}{1 \times 10^{2}}\\
\beta =4.4 \times 10^{-3} \times 10^{-2}\\
\beta =4.4 \times 10^{-5}\\
\beta=0.000044
\end{gather}
\]
\[ \bbox[#FFCCCC,10px]
{\beta =4.4 \times 10^{-5} °{\text{C}}^{-1}}
\]
The coefficient of linear thermal expansion of aluminum
\[ \bbox[#99CCFF,10px]
{\beta =2\alpha }
\]
\[
\begin{gather}
\alpha=\frac{\beta }{2}\\
\alpha=\frac{4.4 \times 10^{-5}}{2}
\end{gather}
\]
\[ \bbox[#FFCCCC,10px]
{\alpha =2.2 \times 10^{-5} °{\text{C}}^{-1}}
\]