A cannon launches a projectile with a mass equal to 1225 kg with a speed of 762 m/s. The projectile is
propelled by a mass of 300 kg of gunpowder, it is known that 1 g of gunpowder burns by producing 1500 cal.
What is the thermal efficiency of this cannon as a heat engine? Assume 1 cal = 4.2 J.
Problem data:
- Mass of the projectile: mP = 1225 kg;
- Velocity of the projectile: v = 762 m/s;
- Mass of the gunpowder: mG = 300 kg;
- Heat produced by the gunpowder: q = 1500 cal/g.
Problem diagram:
The mass of gunpowder
mG when it is detonated produces a quantity of heat
Q, this
energy does a work
W on the projectile
mP. This work will be the kinetic energy
K of the projectile being triggered with speed
v (Figure 1).
Solution
First, we must convert the quantity of heat produced by the gunpowder from calories per gram (cal/g) to joules
per kilogram (J/kg)
\[
q=1500\;\frac{\cancel{\text{cal}}}{\cancel{\text{g}}}\times \frac{4.2\;\text{J}}{1\;\cancel{\text{cal}}}\times \frac{1000\;\cancel{\text{g}}}{1\;\text{kg}}=6300000\;\frac{\text{J}}{\text{kg}}=6.3\times 10^{6}\;\frac{\text{J}}{\text{kg}}
\]
The total energy produced by the powder will be
\[
\begin{gather}
Q=m_{B}q\\
Q=300\times 6.3\times 10^{6}\\
Q=3\times 10^{2}\times 6.3\times 10^{6}\\
Q=18.9\times 10^{2}\times 10^{6}\\
Q\simeq 1.9\times 10^{9}\;\text{J} \tag{I}
\end{gather}
\]
The kinetic energy is given by
\[ \bbox[#99CCFF,10px]
{K=\frac{m v^{2}}{2}}
\]
the energy acquired by the projectile
\[
\begin{gather}
K=\frac{m_{P} v^{2}}{2}\\
K=\frac{1225\times 762^{2}}{2}\\
K=\frac{1225\times 580664}{2}\\
K=\frac{711288900}{2}\\
K=355644450\\
K\simeq 3.6\times 10^{8}\;\text{J} \tag{II}
\end{gather}
\]
The thermal efficiency is given by
\[ \bbox[#99CCFF,10px]
{\eta =\frac{W}{Q}}
\]
As the work done is equal to kinetic energy
W =
K, the thermal efficiency will be
\[
\begin{gather}
\eta =\frac{3.6\times 10^{8}}{1.9\times 10^{9}}\\
\eta=\frac{3.6\times 10^{8}}{1.9\times 10^{9}}\\
\eta \simeq 1.89\times 10^{8}.10^{-9}\\
\eta\simeq 1.89\times 10^{-1}\\
\eta \simeq 0.189=\frac{18.9}{100}
\end{gather}
\]
\[ \bbox[#FFCCCC,10px]
{\eta \simeq 18.9\;\text{%}}
\]