Solved Problem on Temperature
advertisement   



The difference between the values indicated in a thermometer in the Fahrenheit scale and another in the Celsius scale are equal to 40 for the same temperature. What are the temperatures read in the two thermometers?


Problem data:
  • Difference between the thermometer values:    Δt = 40.
Solution

The problem gives the difference between temperatures on the Fahrenheit and Celsius scales is equal to
\[ \begin{gather} \Delta t=t_{F}-t_{C}=40 \tag{I} \end{gather} \]
The equation to convert temperature in Celsius into Fahrenheit is
\[ \bbox[#99CCFF,10px] {\frac{t_{C}}{5}=\frac{t_{F}-32}{9}} \]
writing how
\[ \begin{gather} t_{C}=\frac{5}{9}(t_{F}-32) \tag{II} \end{gather} \]
substituting the expression (II) into the condition (I), we have
\[ t_{F}-\frac{5}{9}(t_{F}-32)=40 \]
multiplying the expression by 9, we obtain
\[ \begin{gather} \qquad\qquad t_{F}-\frac{5}{9}(t_{F}-32)=40 \qquad (\times 9)\\ 9t_{F}-\cancel{9}\times \frac{5}{\cancel{9}}\times (t_{F}-32)=9\times40\\ 9t_{F}-5\times (t_{F}-32)=360\\ 9t_{F}-5t_{F}+5\times 32=360\\ 4t_{F}+160=360\\ 4t_{F}=360-160\\ 4t_{F}=200\\ t_{F}=\frac{200}{4} \end{gather} \]
\[ \bbox[#FFCCCC,10px] {t_{F}=50\;\text{°F}} \]
substituting this value in the expression (II), we have
\[ \begin{gather} t_{C}=\frac{5}{9}\times (50-32)\\ t_{C}=\frac{5}{\cancel{9}}\times \cancelto{2}{18}\\ t_{C}=5\times 2 \end{gather} \]
\[ \bbox[#FFCCCC,10px] {t_{C}=10\;\text{°C}} \]
advertisement