The difference between the values indicated in a thermometer in the Fahrenheit scale and another in
the Celsius scale are equal to 40 for the same temperature. What are the temperatures read in the
two thermometers?
Problem data:
- Difference between the thermometer values: Δt = 40.
Solution
The problem gives the difference between temperatures on the Fahrenheit and Celsius scales is
equal to
\[
\begin{gather}
\Delta t=t_{F}-t_{C}=40 \tag{I}
\end{gather}
\]
The equation to convert temperature in Celsius into Fahrenheit is
\[ \bbox[#99CCFF,10px]
{\frac{t_{C}}{5}=\frac{t_{F}-32}{9}}
\]
writing how
\[
\begin{gather}
t_{C}=\frac{5}{9}(t_{F}-32) \tag{II}
\end{gather}
\]
substituting the expression (II) into the condition (I), we have
\[
t_{F}-\frac{5}{9}(t_{F}-32)=40
\]
multiplying the expression by 9, we obtain
\[
\begin{gather}
\qquad\qquad t_{F}-\frac{5}{9}(t_{F}-32)=40 \qquad (\times 9)\\
9t_{F}-\cancel{9}\times \frac{5}{\cancel{9}}\times (t_{F}-32)=9\times40\\
9t_{F}-5\times (t_{F}-32)=360\\
9t_{F}-5t_{F}+5\times 32=360\\
4t_{F}+160=360\\
4t_{F}=360-160\\
4t_{F}=200\\
t_{F}=\frac{200}{4}
\end{gather}
\]
\[ \bbox[#FFCCCC,10px]
{t_{F}=50\;\text{°F}}
\]
substituting this value in the expression (II), we have
\[
\begin{gather}
t_{C}=\frac{5}{9}\times (50-32)\\
t_{C}=\frac{5}{\cancel{9}}\times \cancelto{2}{18}\\
t_{C}=5\times 2
\end{gather}
\]
\[ \bbox[#FFCCCC,10px]
{t_{C}=10\;\text{°C}}
\]