Solved Problem on Heat
advertisement   



Determine the heat required to convert 100 g of ice at −10 °C in 100 g of steam at 100 °C. Also, plot a temperature graph as a function of the quantity of heat of the phase changes. Data:
specific heat of ice:    ci = 0.5 cal/g°C;
latent heat of fusion:    LF = 80 cal/g;
specific heat of water:    cw = 1.0 cal/g°C;
latent heat of vaporization:    Lv = 540 cal/g.


Problem data:
  • Mass of ice:    m = 100 g;
  • Initial temperature of ice:    ti = −10 °C;
  • Final temperature of steam:    tf = 100 °C;
  • Specific heat of ice:    ci = 0.5 cal/g°C;
  • Latent heat of fusion:    LF = 80 cal/g;
  • Specific heat of water:    cw = 1.0 cal/g°C;
  • Latent heat of vaporization:    Lv = 540 cal/g.
Solution:
  • 1.ª Part
First, all ice must be heated from −10 °C to 0 °C (Figure 1), during this part there is no phase change (the ice does not melt). Using the equation of heat
Figure 1
\[ \begin{gather} \bbox[#99CCFF,10px] {Q=mc\Delta t} \tag{I} \end{gather} \]
\[ \begin{gather} Q_1=mc_i\Delta t \\[5pt] Q_1=m c_i(t_0-t_{-10}) \\[5pt] Q_1=(100\;\mathrm{\cancel g})\left(0.5\;\mathrm{\small{\frac{cal}{\cancel g\cancel{°C}}}}\right)[0-(-10)]\;\mathrm{\cancel{°C}} \\[5pt] Q_1=100\times(0.5\;\mathrm{cal})\times 10 \\[5pt] Q_1=500\;\mathrm{cal} \end{gather} \]
  • 2.ª Part
The ice must melt from the solid state to the liquid, during this part, the temperature remains at 0 °C (Figure 2). Using the equation for latent heat
Figure 2
\[ \begin{gather} \bbox[#99CCFF,10px] {Q=mL} \tag{I} \end{gather} \]
\[ \begin{gather} Q_2=mL_F \\[5pt] Q_2=100\;\mathrm{\cancel g}\times 80\;\mathrm{\small{\frac{cal}{\cancel g}}} \\[5pt] Q_2=8000\;\mathrm{cal} \end{gather} \]
  • 3.ª Part
Water must be heated from 0 °C to 100 °C (Figure 3), during this part, there is no phase change (water does not vaporize), using the expression (I)
Figure 3
\[ \begin{gather} Q_3=mc_w\Delta t \\[5pt] Q_3=m c_w(t_{100}-t_0) \\[5pt] Q_3=(100\;\mathrm{\cancel g})\left(1.0\;\mathrm{\small{\frac{cal}{\cancel g\cancel{°C}}}}\right)(100-0)\;\mathrm{\cancel{°C}} \\[5pt] Q_3=100\times(1.0\;\mathrm{cal})\times 100 \\[5pt] Q_3=10000\;\mathrm{cal} \end{gather} \]
  • 4.ª Part
Water should evaporate, passing from the liquid to the steam, during this part, the temperature remains at 100 °C (Figure 4), using the expression (II)
Figure 4
\[ \begin{gather} Q_4=mL_v \\[5pt] Q_4=100\;\mathrm{\cancel g}\times 540\;\mathrm{\small{\frac{cal}{\cancel g}}} \\[5pt] Q_4=54000\;\mathrm{cal} \end{gather} \]
Thus the total heat to convert 100 g of ice into −10 °C of steam at 100 °C will be the sum of all parts calculated above.
\[ \begin{gather} Q=Q_1+Q_2+Q_3+Q_4 \\[5pt] Q=(500+8000+10000+54000)\;\mathrm{cal} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {Q=72500\;\mathrm{cal}} \end{gather} \]
Plotting in a graph the values of the temperatures of each phase of the transformations and the amounts of heat accumulated at each phase, we have the graph of Figure 5 below

Figure 5


Note: if the graph is plotted to scale, the amount of heat required to heat the ice from −10 °C to 0 °C is represented by a very small section (highlighted), while the amount of heat needed to vaporize the water at 100 °C occupies most of the graph.
advertisement