Solved Problem on Heat
advertisement   



A body made of 250 g of brass is heated from 0 °C to 100 °C, for this 2300 cal were used. Calculate:
a) The specific heat of the brass;
b) The heat capacity of the body;
c) If the body in the final situation loses 1000 cal, what will be its temperature?


Problem data:
  • Mass of the body:    m = 250 g;
  • Initial temperature:    ti = 0 °C;
  • Final temperature:    tf = 100 °C;
  • Heat used to warm the body:    Q = 2300 cal.
Solution:

a) Using the equation for heat transfer
\[ \begin{gather} \bbox[#99CCFF,10px] {Q=mc\Delta t} \tag{I} \end{gather} \]
\[ \begin{gather} c=\frac{Q}{m(t_f-t_i)}\\[5pt] c=\frac{2300\;\mathrm{cal}}{(250\;\mathrm g)(100-0)\;\mathrm{°C}}\\[5pt] c=\frac{23\cancel{00}\;\mathrm{cal}}{250\cancel{00}\;\mathrm{g°C}} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {c=0.092\;\mathrm{cal/g°C}} \end{gather} \]

b) The heat capacity of the body is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {C=mc} \end{gather} \]
\[ \begin{gather} C=(250\;\mathrm{\cancel g})\left(0.092\;\mathrm{\small{\frac{cal}{\cancel g°C}}}\right) \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {C=23\;\mathrm{cal/°C}} \end{gather} \]

c) If the body loses heat, we have Q = −1 000 cal, the temperature of 100 °C becomes the initial temperature of the body, ti, applying the equation (I)
\[ \begin{gather} Q=mc(t_f-t_i)\\[5pt] t_f-t_i=\frac{Q}{mc}\\[5pt] t_f=\frac{Q}{mc}+t_i\\[5pt] t_f=\frac{-1000\;\mathrm{\cancel{cal}}}{(250\;\mathrm{\cancel g})\left(0.092\;\mathrm{\frac{\cancel{cal}}{\cancel g°C}}\right)}+100\;\mathrm{°C}\\[5pt] t_f=-\frac{1000}{23\;\mathrm{\frac{1}{°C}}}+100\;\mathrm{°C}\\[5pt] t_f=(-43.5+100)\;\mathrm{°C} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {t_f=56.5\;\mathrm{°C}} \end{gather} \]
advertisement