A gas initially occupies a volume of 15 liters at 27 °C and exerts a pressure of 5 atmospheres on the walls of
the container where it is closed. Determine:
a) The volume occupied by the gas at 127 °C under the pressure of 5 atmospheres;
b) From the initial state, the pressure exerted by the gas at 27 °C when its volume increases to 30 liters;
c) From the initial state, the temperature of the gas, under a pressure of 8 atmospheres and 15 liter volume.
Solution
a) First, we must convert the given temperatures in degrees Celsius (°C) to Kelvins (K) used in the
International System of Units (
S.I.)
\[
\begin{gather}
T_{i}=t_{i}+273=27+273=300\;\text{K}\\[10pt]
T_{f}=t_{f}+273=127+273=400\;\text{K}
\end{gather}
\]
For the initial and final states
Initial state |
Final state |
pressure: pi = 5 atm |
pressure: p1 = 5 atm |
volume: Vi = 15 \( \ell \) |
volume: V1 |
temperature: Ti = 300 K |
temperature: T1 = 400 K |
From the
General Gas Equation
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\frac{p_{i}V_{i}}{T_{i}}=\frac{p_{f}V_{f}}{T_{f}}}
\end{gather}
\]
a) As in the given process, the pressure remains constant
pi =
pf, we have
an
isobaric process, and the
General Law becomes
Charles' Law
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\frac{V_{i}}{T_{i}}=\frac{V_{f}}{T_{f}}}
\end{gather}
\]
substituting the problem data
\[
\begin{gather}
\frac{15}{300}=\frac{V_{1}}{400}\\[5pt]
v_{1}=\frac{15\times 400}{300}\\[5pt]
v_{1}=\frac{15\times 4}{3}\\[5pt]
v_{1}=5\times 4
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{V_{1}=20\;\ell}
\end{gather}
\]
b) For the initial and final states
Initial state |
Final state |
pressure: pi = 5 atm |
pressure: p2 |
volume: Vi = 15 \( \ell \) |
volume: V2 = 30 \( \ell \) |
temperature: Ti = 300 K |
temperature: T1 = 300 K |
As in the given process, the temperature remains constant
Ti =
Tf, we have
an
isothermal process, and the
General Law becomes
Boyle's Law
\[
\begin{gather}
\bbox[#99CCFF,10px]
{p_{i}V_{i}=p_{f}V_{f}}
\end{gather}
\]
substituting the problem data
\[
\begin{gather}
5\times 15=30 p_{2}\\[5pt]
p_{2}=\frac{75}{30}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{p_{2}=2.5\;\text{atm}}
\end{gather}
\]
c) For the initial and final states
Initial state |
Final state |
pressure: pi = 5 atm |
pressure: p3 = 8 atm |
volume: Vi = 15 \( \ell \) |
volume: V2 = 15 \( \ell \) |
temperature: Ti = 300 K |
temperature: T3 |
As in the given process, the volume remains constant
Vi =
Vf, we have an
isovolumetric or isometric, or isochoric process, and
the
General Law becomes
Gay-Lussac's Law
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\frac{p_{i}}{T_{i}}=\frac{p_{f}}{T_{f}}}
\end{gather}
\]
substituting the problem data
\[
\begin{gather}
\frac{5}{300}=\frac{8}{T_{3}}\\[5pt]
T_{3}=\frac{8\times 300}{5}\\[5pt]
T_{3}=8\times 60
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{T_{3}=480\;\text{K}}
\end{gather}
\]