The motion of a particle is described by the velocity-time graph, as shown in the figure.
Find:
a) The acceleration of the particle;
b) Write the equation of the speed as a function of time;
c) What is the displacement between 3 s and 7 s?
Solution
a) Taking two points of the graph, (
x1,
y1) = (6, 2) and
(
x2,
y2) = (0, 14). The acceleration of the particle in a
velocity-time graph (
v ×
t), will be given by the tangent of the line (Figure 1)
\[
\begin{gather}
\bbox[#99CCFF,10px]
{a=\tan\alpha =-\tan\beta=\frac{\text{opposite side}}{\text{adjacent side}}=\frac{v_2-v_1}{t_2-t_1}}
\end{gather}
\]
\[
\begin{gather}
a=\frac{14\;\mathrm{\frac{m}{s}}-2\;\mathrm{\frac{m}{s}}}{0-6\;\mathrm s}\\[5pt]
a=\frac{12\;\mathrm{\frac{m}{\cancel s}}}{-6\;\mathrm{\cancel s}}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{a=-2\;\mathrm{m/s^2}}
\end{gather}
\]
b) The straight line represents the graph of a
Linear Equation of the type
\( y=ax+b \),
comparing with the function for the speed we can make the following associations
\[
\begin{array}{c}
y & = & b & + & a x\\
\downarrow & & \downarrow & & \downarrow & \\
v & = & v_0 & + & a t
\end{array}
\]
the constant
a was obtained in the previous item, it corresponds to acceleration
a = −2 m/s
2, and the value of
b corresponds to the initial speed of the
particle, read in the graph, where the line intercepts the
y-axis
v0 = 14 m, the
equation of speed as a function of time is
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{v=14-2t}
\end{gather}
\]
c) First, we must find the speed of the particle in the instants 3 and 7 seconds using the equation for the
speed obtained in the previous item
\[
\begin{gather}
v(3)=14\;\mathrm{\small{\frac{m}{s}}}-\left(2\;\mathrm{\small{\frac{m}{s^{\cancel 2}}}}\right)(3\;\mathrm{\cancel s})\\[5pt]
v(3)=14\;\mathrm{\small{\frac{m}{s}}}-6\;\mathrm{\small{\frac{m}{s}}}\\[5pt]
v(3)=8\;\mathrm{m/s}
\end{gather}
\]
\[
\begin{gather}
v(7)=14\;\mathrm{\small{\frac{m}{s}}}-\left(2\;\mathrm{\small{\frac{m}{s^{\cancel 2}}}}\right)(7\;\mathrm{\cancel s})\\[5pt]
v(7)=14\;\mathrm{\small{\frac{m}{s}}}-14\;\mathrm{\small{\frac{m}{s}}}\\[5pt]
v(7)=0
\end{gather}
\]
In a graph of velocity versus time
v ×
t, the displacement is numerically equal to the area
under the straight line (figure 2), the area of a triangle is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{A=\frac{Bh}{2}}
\end{gather}
\]
then the displacement will be
\[
\begin{gather}
\Delta S\;\overset{\text{N}}{=}\;A=\frac{(7-3)\times 8}{2}\\[5pt]
\Delta S=4\times 4
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{\Delta S=16\;\mathrm{m/s}}
\end{gather}
\]