Solved Problem on One-dimensional Motion
advertisement   



The motion of a body is described by the displacement as a function of time
\[ \begin{gather} S=-10+4 t \end{gather} \]
where the position is measured in kilometers and the time in hours. Find:
a) The initial position;
b) The speed;
c) The instant in which the body passes through the origin;
d) The position of the body at time 4 h.


Solution

The function describing the displacement as a function of time is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {S=S_0+vt} \end{gather} \]
with the following associations
\[ \begin{array}{c} S & = & S_0 & + & v & t\\ & & \downarrow & & \downarrow & \\ S & = & -10 & + & 4 & t \end{array} \]

a) The initial position of the body
\[ \begin{gather} \bbox[#FFCCCC,10px] {S_0=-10\;\mathrm{km}} \end{gather} \]

b) Speed of the body
\[ \begin{gather} \bbox[#FFCCCC,10px] {v=4\;\mathrm{km/h}} \end{gather} \]

c) When the body passes the origin of the coordinate system, we have S = 0, substituting this value in the given function
\[ \begin{gather} 0=-10\;\mathrm{km}+\left(4\mathrm{\small{\frac{km}{h}}}\right)t\\[5pt] \left(4\mathrm{\small{\frac{km}{h}}}\right)t=10\;\mathrm{km}\\[5pt] t=\frac{10\;\mathrm{\cancel{km}}}{4\mathrm{\frac{\cancel{km}}{h}}} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {t=2.5\;\mathrm{h}} \end{gather} \]

d) For t = 4 h the position will be
\[ \begin{gather} S=-10\;\mathrm{km}+\left(4\;\mathrm{\small{\frac{km}{\cancel h}}}\right)(4\;\mathrm{\cancel h})\\[5pt] S=-10\;\mathrm{km}+16\;\mathrm{km} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {S=6\;\mathrm{km}} \end{gather} \]
advertisement