In the system of the figure, body B slides on a horizontal surface without friction. It is
connected through ropes and pulleys, lightweight and frictionless, with two bodies, A and C,
that move vertically. The masses of A, B, and C are, respectively, 5 kg, 2 kg and
3 kg.Find the acceleration of the system and the magnitude of tension force in the cordss.
Problem data:
- Mass of body A: mA = 5 kg;
- Mass of body B: mB = 2 kg;
- Mass of body C: mC = 3 kg;
- Acceleration due to gravity: g = 9.8 m/s2.
Problem diagram:
We choose the acceleration in the direction in which body A moves downward.
Drawing a
Free-Body Diagram for each block.
-
Body A (Figure 2):
-
Vertical direction:
- \( \vec W_{\small A} \): weight of body A;
- \( \vec T_{\small AB} \): tension force in the cord between blocks A and B.
- >
Body B (Figure 3):
-
Vertical direction:
- \( \vec W_{\small B} \): weight of body B;
- \( \vec N_{\small B} \): normal reaction force of the surface on the body.
-
Horizontal direction:
- \( \vec T_{\small AB} \): tension force in the rope between blocks A and B;
- \( \vec T_{\small BC} \): tension force in the rope between blocks B and C.
-
Corpo C (Figure 4):
-
Vertical direction:
- \( \vec W_{\small C} \): weight of body C;
- \( \vec T_{\small BC} \): tension force in the rope between blocks B and C.
Solution
Applying
Newton's Second Law
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\vec F=m\vec a}
\end{gather}
\]
In the horizontal direction, no forces are acting.
In the vertical direction
\[
\begin{gather}
W_{\small A}-T_{\small {AB}}=m_{\small A}a \tag{I}
\end{gather}
\]
In the vertical direction, the weight and the normal force cancel out, there is no vertical motion.
In the horizontal direction
\[
\begin{gather}
T_{\small {AB}}-T_{\small {BC}}=m_{\small B}a \tag{II}
\end{gather}
\]
In the horizontal direction, there are no forces acting.
in the vertical direction
\[
\begin{gather}
T_{\small {BC}}-W_{\small C}=m_{\small C}a \tag{III}
\end{gather}
\]
The weight is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{W=mg}
\end{gather}
\]
For the bodies
A and
C
\[
\begin{gather}
W_{\small A}=m_{\small A}g \tag{IV-a}
\end{gather}
\]
\[
\begin{gather}
W_{\small C}=m_{\small C}g \tag{IV-b}
\end{gather}
\]
substituting equation (IV-a) into equation (I)
\[
\begin{gather}
m_{\small A}g-T_{\small {AB}}=m_{\small A}a \tag{V-a}
\end{gather}
\]
substituting equation (IV-b) into equation (III)
\[
\begin{gather}
T_{\small {BC}}-m_{\small C}g=m_{\small C}a \tag{V-b}
\end{gather}
\]
The equations (II), (V-a) e (V-b) can be written as a system of linear equations with three variables
(
TAB,
TBC, and
a), adding the three equations
\[
\begin{gather}
\frac{
\left\{
\begin{array}{rr}
m_{\small A}g-\cancel{T_{\small {AB}}} &=m_{\small A}a\\
\cancel{T_{\small {AB}}}-\cancel{T_{\small {BC}}}&=m_{\small B}a\\
\cancel{T_{\small {BC}}}-m_{\small C}g &=m_{\small C}a
\end{array}
\right.}
{m_{\small A}g-m_{\small C}g=\left(m_{\small A}+m_{\small B}+m_{\small C}\right)a}\\[5pt]
a=\frac{m_{\small A}g-m_{\small C}g}{m_{\small A}+m_{\small B}+m_{\small C}}\\[5pt]
a=\frac{\left(5\;\mathrm{kg}\right)\left(9.8\;\frac{\mathrm m}{\mathrm{s^2}}\right)-\left(3\;\mathrm{kg}\right)\left(9.8\;\mathrm{\frac{m}{s^2}}\right)}{(5\;\mathrm{kg})+(2\;\mathrm{kg})+(3\;\mathrm{kg})}\\[5pt]
a=\frac{19.6\;\mathrm{\frac{\cancel{kg}.m}{s^2}}}{10\;\mathrm{\cancel{kg}}}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{a\approx 2\;\mathrm{m/s^2}}
\end{gather}
\]
Substituting the mass of body
A and the acceleration, found above, in the first expression of
the system, the tension in the cord will be
\[
\begin{gather}
m_{\small A}g-T_{\small {AB}}=m_{\small A}a\\[5pt]
T_{\small {AB}}=m_{\small A}g-m_{\small A}a\\[5pt]
T_{AB}=(5\;\mathrm{kg})\left(9.8\;\mathrm{\frac{m}{s^2}}\right)-(5\;\mathrm{kg})\left(2\;\mathrm{\frac{m}{s^2}}\right)
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{T_{\small {AB}}=39\; \mathrm N}
\end{gather}
\]
Substituting the mass of body
C and the acceleration, found above, in the third expression
of the system, the tension in the cord will be
\[
\begin{gather}
T_{\small {BC}}-m_{\small C}g=m_{\small C}a\\[5pt]
T_{\small {BC}}=m_{\small C}a+m_{\small C}g\\[5pt]
T_{BC}=(3\;\mathrm{kg})\left(2\;\mathrm{\frac{m}{s^2}}\right)+(3\;\mathrm{kg})\left(9.8\;\mathrm{\frac{m}{s^2}}\right)
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{T_{\small {BC}}\approx 35.4\; \mathrm N}
\end{gather}
\]