Solved Problem on Dynamics
In an Atwood machine, the two bodies, at rest on a horizontal surface, are connected by a rope of negligible mass that passes over a frictionless pulley of negligible mass. The weights of the masses are ma = 24 kg and mb = 40 kg. Determine the body accelerations when:
a) F = 400 N;
b) F = 720 N;
c) F = 1200 N.

 

Problem data:

  • Mass of body A:    ma = 24 kg;
  • Mass of body B:    mb = 40 kg;
  • Acceleration due to gravity:    g = 9.8 m/s2.

Problem diagram:

We choose a frame of reference oriented positively upward, in the same direction as the force \( \vec F \).
The force applied to a pulley is equally distributed between the two sides (Figure 1-A). So, the magnitude of the force on each side of the pulley will be \( \frac{\vec F}{2} \).

Figure 1

Assuming the rope has a negligible mass, it only transmits the force of the pulley to the bodies. Thus, the component of force \( \vec F \) over each body will be \( \frac{\vec F}{2} \) (Figure 1-B).
Drawing a free-bodies diagram for each block.

  • Body A (Figure 2):
    • \( \dfrac{\vec{F}}{2} \): transmitted force from the pulley;
    • \( {\vec W}_a \): weight of the body A.
Figure 2
  • Body B (Figure 3):
    • \( \dfrac{\vec F}{2} \): transmitted force from the pulley;
    • \( {\vec W}_b \): weight of body B.
Figure 3

Solution:

Applying Newton's Second Law

\[ \begin{gather} \bbox[#99CCFF,10px] {\vec F=m\vec a} \end{gather} \]
  • Body A:
\[ \begin{gather} \frac{F}{2}-W_a=m_aa_a \tag{I} \end{gather} \]
  • Body B:
\[ \begin{gather} \frac{F}{2}-W_b=m_ba_b \tag{II} \end{gather} \]

The weight is given by

\[ \begin{gather} \bbox[#99CCFF,10px] {W=mg} \end{gather} \]

we have for bodies, A and B

\[ \begin{gather} W_a=m_ag \tag{III} \\[10pt] W_b=m_bg \tag{IV} \end{gather} \]

substituting equation (III) into equation (I)

\[ \begin{gather} \frac{F}{2}-m_ag=m_aa_a \tag{V} \end{gather} \]

substituting equation (IV) into equation (II)

\[ \begin{gather} \frac{F}{2}-m_bg=m_ba_b \tag{VI} \end{gather} \]

a) If   \( F=400\;\text N \),   the acceleration of body A is given by equation (V)

\[ \begin{gather} a_a=\frac{\dfrac{400\;\mathrm N}{2}-(24\;\mathrm kg)\times\left(9.8\;\mathrm{\frac{m}{s^2}}\right)}{24\;\mathrm{kg}} \\[5pt] a_a=-{\frac{35.2\;\mathrm{\frac{\cancel{kg}.m}{s^2}}}{24\;\mathrm{\cancel{kg}}}} \\[5pt] a_a=-1.5\;\mathrm{m/s^2} \end{gather} \]

For body B, using the equation (VI)

\[ \begin{gather} a_b=\frac{\dfrac{400\;\mathrm N}{2}-(40\;\mathrm{kg})\times\left(9.8\;\mathrm{\frac{m}{s^2}}\right)}{40\;\mathrm{kg}} \\[5pt] a_b=-{\frac{192\;\mathrm{\frac{\cancel{kg}.m}{s^2}}}{40\;\mathrm{\cancel{kg}}}} \\[5pt] a_b=-4.8\;\mathrm{m/s^2} \end{gather} \]
As the accelerations are negative, the bodies must move against the direction of the frame (downward), but as they are on a surface, they remain at rest, and their accelerations are zero
\[ \begin{gather} \bbox[#FFCCCC,10px] {a_a=a_b=0} \end{gather} \]
Figure 4

 

b) If   \( F=720\;\text N \),   the acceleration of body A is given by equation (V)

\[ \begin{gather} a_a=\frac{\dfrac{720\;\mathrm N}{2}-(24\;\mathrm{kg})\times\left(9.8\;\mathrm{\frac{m}{s^2}}\right)}{24\;\mathrm{kg}} \\[5pt] a_a=\frac{124.8\;\mathrm{\frac{\cancel{kg}.m}{s^2}}}{24\;\mathrm{\cancel{kg}}} \\[5pt] a_a=5.2\;\mathrm{m/s^2} \end{gather} \]

For body B, using the equation (VI)

\[ \begin{gather} a_b=\frac{\dfrac{720\;\mathrm N}{2}-(40\;\mathrm{kg})\times\left(9.8\;\mathrm{\frac{m}{s^2}}\right)}{40\;\mathrm{kg}} \\[5pt] a_b=-{\frac{32\;\mathrm{\frac{\cancel{kg}.m}{s^2}}}{40\;\mathrm{\cancel{kg}}}} \\[5pt] a_b=-0.8\;\mathrm{m/s^2} \end{gather} \]
Body A has the acceleration
\[ \begin{gather} \bbox[#FFCCCC,10px] {a_a=5.2\;\mathrm{m/s^2}} \end{gather} \]
As the acceleration of body B is negative, it must move against the orientation of the frame (downward), but as it is on a surface, it remains at rest, and its acceleration will be zero
\[ \begin{gather} \bbox[#FFCCCC,10px] {a_b=0} \end{gather} \]
Figure 5

 

c) If   \( F=1200\;\text N \),   the acceleration of body A is given by the equation (IV)

\[ \begin{gather} a_a=\frac{\dfrac{1200\;\mathrm N}{2}-(24\;\mathrm{kg})\times\left(9.8\;\mathrm{\frac{m}{s^2}}\right)}{24\;\mathrm{kg}} \\[5pt] a_a=\frac{364.8\;\mathrm{\frac{\cancel{kg}.m}{s^2}}}{24\;\mathrm{\cancel{kg}}} \\[5pt] a_a=15.2\;\mathrm{m/s^2} \end{gather} \]
For body B, using the equation (VI)
\[ \begin{gather} a_b=\frac{\dfrac{1200\;\mathrm N}{2}-(40\;\mathrm{kg})\times\left(9.8\;\mathrm{\frac{m}{s^2}}\right)}{40\;\mathrm{kg}} \\[5pt] a_b=\frac{208\;\mathrm{\frac{\cancel{kg}.m}{s^2}}}{40\;\mathrm{\cancel{kg}}} \\[5pt] a_b=4.3\;\mathrm{m/s^2} \end{gather} \]
Figure 6

Body A has acceleration

\[ \begin{gather} \bbox[#FFCCCC,10px] {a_{\small A}=15.2\;\mathrm{m/s^2}} \end{gather} \]

and body B has acceleration

\[ \begin{gather} \bbox[#FFCCCC,10px] {a_{\small B}=4.3\;\mathrm{m/s^2}} \end{gather} \]