In the system of the figure bodies, A and B have masses of 20 kg and 10 kg. respectively.
They are tied by a rope, and on the rope is fixed a spring scale, which reads that the force of
tension on the cord is 100 N. Between the body A and the plane exists friction. The rope is
inextensible and passes through a frictionless pulley and has negligible mass. Determine the
acceleration of the system and the coefficient of friction between the block and the plane.
Problem data:
- Mass of body A: mA = 20 kg;
- Mass of body B: mB = 10 kg;
- Force in the spring scale: T = 100 N;
- Acceleration due to gravity: g = 9.8 m/s2.
Problem diagram:
We choose acceleration in the direction that body
A is descending, the same direction as the
acceleration due to gravity (Figure 1).
Drawing a
Free-Body Diagram, we have the forces that act in each of them.
-
Block A (Figure 2):
- \( {\vec W}_{\small A} \): weight of block A;
- \( \vec T \): tension force on the rope.
Figure 2
-
Block B (Figure 3):
-
Vertical direction:
- \( {\vec W}_{\small B} \): weight of block B;
- \( {\vec N}_{\small B} \): normal reaction force, surface reaction on block B.
-
Horizontal direction:
- \( \vec T \): force of tension on the rope;
- \( {\vec F}_f \): force of friction between the block and the surface.
Figure 3
Solution
Using
Newton's Second Law
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\vec F=m\vec a}
\end{gather}
\]
\[
\begin{gather}
W_{\small A}-T=m_{\small A}a \tag{I}
\end{gather}
\]
The weight is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{W=mg} \tag{II}
\end{gather}
\]
for the body
A
\[
\begin{gather}
W_{\small A}=m_{\small A}g \tag{III}
\end{gather}
\]
substituting equation (III) into equation (I)
\[
\begin{gather}
m_{\small A}g-T=m_{\small A}a\\[5pt]
a=\frac{m_{\small A}g-T}{m_{\small A}}\\[5pt]
a=\frac{(20\;\mathrm{kg})\times\left(9.8\;\mathrm{m/s^2}\right)-(100\;\mathrm N)}{20\;\mathrm{kg}}\\[5pt]
a=\frac{96\;\mathrm{\frac{\cancel{kg}.m}{s^2}}}{20\;\mathrm{\cancel{kg}}}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{a=4.8\;\mathrm{m/s^2}}
\end{gather}
\]
Applying the expression (I)
\[
\begin{gather}
T-F_f=m_{\small B}a \tag{IV}
\end{gather}
\]
The force of friction is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{{\vec F}_f=\mu \vec N}
\end{gather}
\]
for the block
B
\[
\begin{gather}
F_f=\mu N_{\small B} \tag{V}
\end{gather}
\]
substituting the equation (V) into equation (IV)
\[
\begin{gather}
T-\mu N_{\small B}=m_{\small B}a \tag{VI}
\end{gather}
\]
In this direction, there is no motion, weight, and normal force cancel each other
\[
\begin{gather}
N_{\small B}=W_{\small B} \tag{VII}
\end{gather}
\]
substituting the equation (II) to the weight of body
B
\[
\begin{gather}
W_{\small B}=m_{\small B}g \tag{VIII}
\end{gather}
\]
substituting the equation (IX) into equation (VIII)
\[
\begin{gather}
N_{\small B}=m_{\small B}g \tag{XI}
\end{gather}
\]
substituting equation (IX) into equation (VI), the problem data and acceleration found above
\[
\begin{gather}
T-\mu m_{\small B}g=m_{\small B}a\\[5pt]
\mu=\frac{T-m_{\small B}a}{m_{\small B}g}\\[5pt]
\mu=\frac{(100\;\mathrm N)-(10\;\mathrm{kg})\times\left(4.8\;\mathrm{m/s^2}\right)}{(10\;\mathrm{kg})\times\left(9.8\;\mathrm{m/s^2}\right)}\\[5pt]
\mu=\frac{52\;\mathrm{\frac{\cancel{kg}.\cancel m}{\cancel{s^2}}}}{98\;\mathrm{\frac{\cancel{kg}.\cancel m}{\cancel{s^2}}}}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{\mu\approx 0.5}
\end{gather}
\]