A block of mass 5 kg, is launched with an initial speed of 20 m/s in ascending direction over an inclined
plane of 45°. The coefficient of friction between the block and the plan is equal to 0.4. Determine the
distance that the block will come to rest.
Problem data:
- Mass of the block: m = 5 kg;
- Initial speed: v0 = 20 m/s;
- Angle of the inclined plane: θ = 45°;
- Coefficient of friction: μ = 0.4;
- Acceleration due to gravity: g = 9.8 m/s2;
Problem diagram:
We choose a reference frame pointed out in the upward direction of the inclined plane and with the
x-axis parallel to the plane (Figure 1).
Drawing a
Free-Body Diagram, we have the forces that act on the block (Figure 2).
- \( \vec W \): weight of block;
- \( \vec N \): normal reaction force, surface reaction on block;
- \( {\vec F}_f \): force of friction between the block and the plane.
The weight can be projected in two directions, a component parallel to the
x-axis,
\( {\vec W}_{\small P} \),
and the other normal or perpendicular,
\( {\vec W}_{\small N} \)
(Figure 3-A).
Plotting the forces in an
xy coordinate system (Figure 3-B).
Solution
Applying
Newton's Second Law
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\vec F=m\vec a}
\end{gather}
\]
\[
\begin{gather}
-W_{\small P}-F_f=ma \tag{I}
\end{gather}
\]
The parallel component of the weight is given by
\[
\begin{gather}
W_{\small P}=W\sin\theta \tag{II}
\end{gather}
\]
substituting equation (II) into equation (I)
\[
\begin{gather}
-W\sin\theta-F_f=ma \tag{III}
\end{gather}
\]
There is no motion in this direction, the normal force and the normal weight component cancel our each other
\[
\begin{gather}
N=W_{\small N} \tag{IV}
\end{gather}
\]
The normal weight component is given by
\[
\begin{gather}
W_{\small N}=W\cos \theta \tag{V}
\end{gather}
\]
substituting equation (V) into equation (IV)
\[
\begin{gather}
N=W\cos \theta \tag{VI}
\end{gather}
\]
The weight is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{W=mg} \tag{VII}
\end{gather}
\]
substituting the equation (VII) into equations (III) and (VI)
\[
\begin{gather}
-mg\sin\theta-F_f=ma \tag{VIII}
\end{gather}
\]
\[
\begin{gather}
N=mg\cos \theta \tag{IX}
\end{gather}
\]
The friction force is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{{\vec F}_f=\mu \vec N} \tag{X}
\end{gather}
\]
substituting the equation (X) into equation (VIII)
\[
\begin{gather}
-mg\sin\theta-\mu N=ma \tag{XI}
\end{gather}
\]
substituting equation (IX) into equation (XI)
\[
\begin{gather}
-\cancel{m}g\sin\theta -\mu \cancel{m}g\cos \theta=\cancel{m}a\\[5pt]
a=-g(\sin\theta +\mu \cos \theta )
\end{gather}
\]
the negative sign of the acceleration indicates that its motion is in the opposite direction to the
orientation of the trajectory, and the speed of the block is decreasing.
\[
\begin{gather}
a=-\left(9.8\;\mathrm{m/s^2}\right)\times(\operatorname{sen}45°-0.4\cos 45°)
\end{gather}
\]
From Trigonometry we have
\( \sin45°=\dfrac{\sqrt{2\;}}{2} \)
e
\( \cos 45°=\dfrac{\sqrt{2\;}}{2} \)
\[
\begin{gather}
a=-\left(9.8\;\mathrm{m/s^2}\right)\times\left(\frac{\sqrt{2\;}}{2}+0.4\times\frac{\sqrt{2\;}}{2}\right)\\[5pt]
a=-9.7\;\mathrm{m/s^2}
\end{gather}
\]
Using the equation of velocity as a function of displacement
\[
\begin{gather}
\bbox[#99CCFF,10px]
{v^2=v_0^2+2a\Delta S}
\end{gather}
\]
The speed of the block decreases until it is equal to zero,
v = 0, and substituting the initial
speed given in the problem, and the calculated acceleration
\[
\begin{gather}
\Delta S=\frac{v^2-v_0^2}{2a}\\[5pt]
\Delta S=\frac{\left(0\;\mathrm{m/s}\right)^2-\left(20\;\mathrm{m/s}\right)^2}{2\times\left(-9.7\;\mathrm{m/s^2}\right)}\\[5pt]
\Delta S=\frac{-400\;\mathrm{m^{\cancel 2}/\cancel{s^{2}}}}{-19.4\;\mathrm{\cancel m}/\cancel{s^2}}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{\Delta S=20.6\;\mathrm m}
\end{gather}
\]