An electric field is produced in a vacuum by two point charges of 2 μC and 5 μC. Calculate:
a) The electric potential, at a point
P, which is 0.2 m from the first charge and 0.5 m from
the second;
b) The electric potential energy that a charge
q = 6×10
−8 C acquires when
placed at
P.
Problem data:
- Electric charge 1: q1 = 2 μC = 2×10−8 C;
- Distance from P to charge 1: d1 = 0.2 m;
- Electric charge 2: q2 = 5 μC = 5×10−8 C;
- Distance from P to charge 2: d2 = 0.5 m;
- Coulomb Constant in a vacuum: \( k_e=9\times 10^9\;\mathrm{\frac{N.m^2}{C^2}} \) .
Solution
a) The electric potential at a point due to various charges, is given by the algebraic sum of the potential
of each charge
\[
\begin{gather}
\bbox[#99CCFF,10px]
{V=k_e\frac{Q_1}{d_1}+k_e\frac{Q_2}{d_2}+...+k_e\frac{Q_n}{d_n}}
\end{gather}
\]
for the two charges
q1 and
q2
\[
\begin{gather}
V=\left(9\times 10^9\;\mathrm{\frac{N.m^{\cancel 2}}{C^{\cancel 2}}}\right)\left(\frac{2\times 10^{-6}\;\mathrm{\cancel C}}{0.2\;\mathrm{\cancel m}}\right)+\left(9\times 10^9\;\mathrm{\frac{N.m^{\cancel 2}}{C^{\cancel 2}}}\right)\left(\frac{5\times 10^{-6}\;\mathrm{\cancel C}}{0.5\;\mathrm{\cancel m}}\right)\\[5pt]
V=\left(\frac{9\times 10^9\times\cancel 2\times 10^{-6}}{\cancel 2\times 10^{-1}}\;\mathrm{\frac{N.m}{C}}\right)+\left(\frac{9\times 10^9\times\cancel 5\times 10^{-6}}{\cancel 5\times 10^{-1}}\;\mathrm{\frac{N.m}{C}}\right)\\[5pt]
V=2\times\left(9\times 10^9\times 10^{-6}\times 10^1\;\mathrm{\frac{N.m}{C}}\right)
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{V=1.8\times 10^5\;\mathrm V}
\end{gather}
\]
b) The electric potential energy is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{U=qV}
\end{gather}
\]
\[
\begin{gather}
U=\left(6\times 10^{-8}\;\mathrm C\right)\left(1.8\times 10^ 5\;\mathrm V\right)
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{U=1.08\times 10^{-2}\;\mathrm J}
\end{gather}
\]