The distance between the proton and the electron in a hydrogen atom is 5.3 × 10
−11 m.
Determine:
a) The magnitude of gravitational force between proton and electron;
b) The magnitude of electric force between proton and electron;
c) Compare the two forces.
Consider the following values:
mass of proton:
\( m_p=1.7\times 10^{-27}\;\mathrm{kg} \) ;
mass of electron:
\( m_e=9.1\times 10^{-31}\;\mathrm{kg} \) ;
Universal Gravitational Constant:
\( G=6.67\times 10^{-11}\;\mathrm{\frac{N.m^2}{kg^2}} \) ;
charge of a proton:
\( q_p=1.6\times 10^{-19}\;\mathrm C \) ;
charge of an electron:
\( q_e=-1.6\times 10^{-19}\;\mathrm C \) ;
Coulomb Constant:
\( k_e=9\times 10^9\;\mathrm{\frac{N.m^2}{C^2}} \) .
Problem data:
- Distance between proton and electron: \( r=5.3\times 10^{-11}\;\mathrm m \) ;
- Mass of proton: \( m_p=1.7\times 10^{-27}\;\mathrm{kg} \) ;
- Mass of electron: \( m_e=9.1\times 10^{-31}\;\mathrm{kg} \) ;
- Universal Gravitational Constant: \( G=6.67\times 10^{-11}\;\mathrm{\frac{N.m^2}{kg^2}} \) ;
- Charge of a proton: \( q_p=1.6\times 10^{-19}\;\mathrm{C} \) ;
- Charge of an electron: \( q_{e}=-1.6\times 10^{-19}\;\text{C} \) ;
- Coulomb Constant: \( k_e=9\times 10^9\;\mathrm{\frac{N.m^2}{C^2}} \) .
Solution
a) Applying
Newton’s Law of Universal Gravitation, the magnitude of gravitational force is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{F_{\small G}=G\frac{M\;m}{r^2}}
\end{gather}
\]
substituting the data for the proton and the electron, the gravitational force between them will be
\[
\begin{gather}
F_{\small G}=G\frac{m_p m_e}{r^2}\\[5pt]
F_{\small G}=\left(6.67\times 10^{-11}\;\mathrm{\frac{N.m^2}{kg^2}}\right)\times \frac{\left(1.7\times 10^{-27}\;\mathrm{kg}\right)\times\left(9.1\times 10^{-31}\;\mathrm{kg}\right)}{\left(5.3\times 10^{-11}\;\mathrm m\right)^{2}}\\[5pt]
F_{\small G}=\left(6.67\times 10^{-11}\;\mathrm{\frac{N.\cancel{m^2}}{\cancel{kg^2}}}\right)\left(\frac{15.5\times 10^{-58}\;\mathrm{\cancel{kg^2}}}{28.1\times 10^{-22}\;\mathrm{\cancel{m^2}}}\right)\\[5pt]
F_{\small G}=\frac{103.4\times 10^{-69}\times 10^{22}}{28.1}\;\mathrm{N}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{F_{\small G}=3.7\times 10^{-47}\;\mathrm N}
\end{gather}
\]
b) Applying
Coulomb's Law, the magnitude of electric force is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{F_{\small E}=k_e\frac{|\;Q\;||\;q\;|}{r^2}}
\end{gather}
\]
substituting the data to the proton and the electron, the electric force between them will
\[
\begin{gather}
F_{\small E}=k_e\;\frac{|\;q_p\;||\;q_e\;|}{r^2}\\[5pt]
F_{\small E}=\left(9\times 10^9\;\mathrm{\frac{N.m^2}{C^2}}\right)\times \frac{|\;1.6\times 10^{-19}\;\mathrm C\;|\times|\;-1.6\times 10^{-19}\;\mathrm C\;|}{\left(5.3\times 10^{-11}\;\mathrm m\right)^{2}}\\[5pt]
F_{\small E}=\left(9\times 10^9\;\mathrm{\frac{N.\cancel{m^2}}{\cancel{C^2}}}\right)\left(\frac{2.6\times 10^{-38}\;\mathrm{\cancel{C^2}}}{28.1\times 10^{-22}\;\mathrm{\cancel{m^2}}}\right)\\[5pt]
F_{\small E}=\frac{23.4\times 10^{-29}\times 10^{22}}{28.1}\;\mathrm{N}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{F_{\small E}=8.3\times 10^{-8}\;\mathrm{N}}
\end{gather}
\]
c) Comparing the two forces
\[
\begin{gather}
\frac{F_{\small E}}{F_{\small G}}=\frac{8.3\times 10^{-8}\;\mathrm{\cancel N}}{3.7\times 10^{-47}\;\mathrm{\cancel N}}\\[5pt]
\frac{F_{\small E}}{F_{\small G}}=2.2\times 10^{-8}\times 10^{47}\\[5pt]
F_{\small E}=2.2\times 10^{39}F_{\small G}
\end{gather}
\]
This result means that the electric force has is
2.2×1039 times greater
than the gravitational force between a proton and an electron in the hydrogen atom.
Note: Imagine a force
2,200,000,000,000,000,000,000,000,000,000,000,000,000
greater than another. In many practical situations, the gravitational force between particles can be neglected in
the calculations.