Suppose that in an experiment of electrochemistry, you remove 1 electron from each set of 10 atoms in a
block of copper of mass
m = 0.3 kg. The molar mass of copper is 64 g/mol. Determine the total charge
removed from the block.
Data:
Avogadro's number
\( N_{\small A}=6.02\times 10^{23} \),
the elementary charge of an electron
\( -1.6\times 10^{-19}\;\mathrm C \).
Problem data:
- Mass of block of copper: m = 0.3 kg;
- Molar mass of copper: M = 64 g/mol;
- Fraction of electrons removed: \( \displaystyle f=\frac{1}{10}\;\frac{\text{electrons}}{\text{atom}} \);
- Elementary charge of the electron: \( e=-1.6\times 10^{-19}\;\mathrm C \);
- Avogadro's Number: \( N_{\small A}=6.02\times 10^{23} \).
Solution
First, we must convert the mass of copper given in kilograms (kg) to grams (g)
\[
\begin{gather}
m=0.3\;\mathrm{\cancel{kg}}\times\frac{1000\;\mathrm g}{1\;\mathrm{\cancel{kg}}}=300\;\mathrm g
\end{gather}
\]
The total electric charge of a body is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{Q=n_e e} \tag{I}
\end{gather}
\]
where
ne is the number of electrons in the sample.
The number of moles,
n, of a given mass is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{n=\frac{m}{M}}
\end{gather}
\]
\[
\begin{gather}
n=\frac{300\;\mathrm{\cancel g}}{64\;\mathrm{\frac{\cancel g}{mol}}}\\[5pt]
n\approx 4.7\;\text{moles of atoms of copper}
\end{gather}
\]
The number of copper atoms,
na, contained in the block will be
\[
\begin{gather}
n_a=nN_A\\[5pt]
n_a=\left(4.7\;\mathrm{\cancel{moles}}\text{ of atoms of copper}\right)\left(6.02\times 10^{23}\;\frac{1}{\mathrm{\cancel{mol}}}\right)\\[5pt]
n_a\approx2.8\times 10^{24}\;\text{atoms of copper}
\end{gather}
\]
As we remove 1 electron from every 10 atoms, the total number of electrons removed from the block will be
\[
\begin{gather}
n_e=n_a f\\[5pt]
n_e=\left(2.8\times 10^{24}\;\cancel{\text{atoms}}\right)\left(\frac{1}{10}\;\frac{\text{electrons}}{\cancel{\text{atoms}}}\right)\\[5pt]
n_e=2.8\times 10^{23}\;\text{electrons}
\end{gather}
\]
substituting this value in expression (I)
\[
\begin{gather}
Q=\left(2.8\times 10^{23}\;\cancel{\text{electrons}}\right)\left(-1.6\times 10^{-19}\;\frac{\text{C}}{\cancel{\text{electrons}}}\right)
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{Q\approx -4.5\times 10^4\;\text{C}}
\end{gather}
\]