Solved Problem on Capacitors
advertisement   



a) What must be the radius of a conducting sphere located in the vacuum so that its capacity is 1 F?
b) Assuming the planet Earth is a perfect sphere of radius equal to 6400 km. What is its capacitance?
The Coulomb Constant in a vacuum is \( k_e=9\times 10^9\;\mathrm{\frac{N.m^2}{C^2}} \).


Problem data:
  • Capacitance of conductor:    C=1 F;
  • Radius of the Earth:    RT=6400 km;
  • Coulomb Constant in a vacuum:    \( k_e=9\times 10^9\;\mathrm{\frac{N.m^2}{C^2}} \).
Solution

a) The capacitance, as a function of the charge Q and the potential V, is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {C=\frac{Q}{V}} \tag{I} \end{gather} \]
The electric potential of a spherical conductor, with radius R charged with charge Q, is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {V=k_e\frac{Q}{R}} \tag{II} \end{gather} \]
substituting the equation (II) into equation (I)
\[ \begin{gather} C=\frac{Q}{k_e\dfrac{Q}{R}}\\[5pt] C=\frac{\cancel Q}{k_e}\frac{R}{\cancel Q}\\[5pt] C=\frac{R}{k_e} \tag{III}\\[5pt] R=Ck_e \end{gather} \]
substituting the problem data
\[ \begin{gather} R=(1\;\mathrm F)\left(9\times 10^9\;\frac{\mathrm{N.m^2}}{\mathrm{C^2}}\right) \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {R=9\times 10^{9}\;\text{m}} \end{gather} \]

Note: this result shows that 1 farad is a large unit, to have a sphere with this capacitance it should have a radius of 9×106 km = 9000000 km.


b) First, we convert the radius of the Earth given in kilometers (km) to meters (m) used in the International System of Units (SI)
\[ \begin{gather} R_{\small T}=6400\;\cancel{\mathrm km}\times\frac{1000\;\mathrm m}{1\;\cancel{\mathrm km}}=6400000\;\mathrm m=6.4\times 10^{6}\;\mathrm m \end{gather} \]
Using the equation (III) of the previous item
\[ \begin{gather} C=\frac{R}{k_e}\\[5pt] C=\frac{6.4\times 10^6\;\mathrm{\cancel m}}{9\times 10^9\;\frac{\mathrm{N.m^{\cancel 2}}}{\mathrm{C^2}}}\\[5pt] C\approx 0.7\times 10^6\times 10^{-9}\;\frac{\mathrm{C^2}}{\mathrm{N.m}}\\[5pt] \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {C\approx 0,7\times 10^{-3}\;\mathrm F=0,7\;\mathrm{mF}} \end{gather} \]

Note: because 1 farad is a large unit, this result shows us why it is common to use submultiples like milli (m) = 10−3, micro (μ) = 10−6 or pico (p) = 10−9.
advertisement