Solved Problem on Gauss's Law
advertisement   



Determine the magnitude of the electric field produced by a thin spherical shell, of radius R and electric charge Q>0, everywhere in the space.


Problem data:
  • Radius of spherical shell:    R.
  • Charge of the spherical shell:    Q.
Problem diagram:

To determine the magnitude of the electric field everywhere in space, we must consider the points inside the spherical shell, rR, and points outside the spherical shell, r > R, (Figure 1).

Figure 1

We construct an internal Gaussian Surface and another surface external to the spherical shell.

Solution
  • For rR:
Inside the spherical shell, there are no charges, the electric field is zero
\[ \bbox[#FFCCCC,10px] {E=0} \]
  • For r > R:
Gauss's Law is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {\oint_{A}{\mathbf{E}}.d\mathbf{A}=\frac{q}{\epsilon_{0}}} \tag{I} \end{gather} \]
The electric field spreads radially from the charge distribution in the er direction, and in each surface area element dA, we have a unit vector n perpendicular to the surface and oriented outwards. Thus, at each point on the surface, the electric field vector E and the unit vector  n have the same direction (Figure 2).

Figure 2

The electric field vector only has a component in the er direction, it can be written as
\[ \begin{gather} \mathbf{E}=E{\;\mathbf{e}}_{r} \tag{II} \end{gather} \]
The area element vector can be written as
\[ \begin{gather} d\mathbf{A}=dA\;\mathbf{n} \tag{III} \end{gather} \]
substituting expressions (II) and (III) into expression (I)
\[ \begin{gather} \oint_{A}E\;{\mathbf{e}}_{r}.dA\;\mathbf{n}=\frac{q}{\epsilon_{0}}\\ \oint_{A}E\;dA\;\underbrace{{\mathbf{e}}_{r}.\mathbf{n}}_{1}=\frac{q}{\epsilon_{0}} \end{gather} \]
Note: As er and n are unit vectors, their magnitudes are equal to 1, and as both are in the same direction, the angle between them is zero, θ=0, \( {\mathbf{e}}_{r}.\mathbf{n}=|\;\mathbf{e}_{r}\;|\;|\;\mathbf{n}\;|\;\cos 0=1\times 1\times 1=1 \)
\[ {\mathbf{e}}_{r}.\mathbf{n}=|\;\mathbf{e}_{r}\;|\;|\;\mathbf{n}\;|\;\cos 0=1\times 1\times 1=1 \]
.
\[ \begin{gather} \oint _{A}E\;dA=\frac{q}{\epsilon_{0}} \tag{IV} \end{gather} \]
Converting from spherical coordinates to Cartesian coordinates x, y, and z are given by
\[ \left\{ \begin{array}{l} x=r\sin \theta \cos \phi\\ y=r\sin \theta \sin \phi\\ z=r\cos \theta \end{array} \right. \tag{V} \]
To obtain the area element, we calculate the Jacobian given by the determinant
\[ J=\left| \begin{matrix} \;\dfrac{\partial x}{\partial r}&\dfrac{\partial x}{\partial \theta}&\dfrac{\partial x}{\partial \phi}\;\\ \;\dfrac{\partial y}{\partial r}&\dfrac{\partial y}{\partial \theta}&\dfrac{\partial y}{\partial \phi}\;\\ \;\dfrac{\partial z}{\partial r}&\dfrac{\partial z}{\partial \theta}&\dfrac{\partial z}{\partial \phi}\; \end{matrix} \right| \]
Calculation of the partial derivatives of the functions x, y, and z given in (V)

\( x=r\sin \theta \cos \phi \):

\( \dfrac{\partial x}{\partial r}=\dfrac{\partial (r\sin \theta \cos\phi )}{\partial r}=\sin \theta \cos \phi \;\dfrac{\partial r}{\partial r}=\sin \theta \cos \phi \times 1=\sin \theta \cos \phi \),
\[ \dfrac{\partial x}{\partial r}=\dfrac{\partial (r\sin \theta \cos\phi )}{\partial r}=\sin \theta \cos \phi \;\dfrac{\partial r}{\partial r}=\sin \theta \cos \phi \times 1=\sin \theta \cos \phi \]
in the derivative with respect to r, the values ​​of θ and ϕ are constant, and the sine and cosine are moved out of the derivative.

\( \dfrac{\partial x}{\partial \theta}=\dfrac{\partial (r\sin \theta\cos \phi)}{\partial \theta}=r\cos \phi \dfrac{\partial(\sin \theta)}{\partial \theta}=r\cos \theta \cos \phi \),
\[ \dfrac{\partial x}{\partial \theta}=\dfrac{\partial (r\sin \theta\cos \phi)}{\partial \theta}=r\cos \phi \dfrac{\partial(\sin \theta)}{\partial \theta}=r\cos \theta \cos \phi \]
in the derivative with respect θ, the values ​​of r and ϕ are constant, and the term at r and the sine are moved out of the derivative.

\( \dfrac{\partial x}{\partial \phi }=\dfrac{\partial (r\sin \theta \cos\phi)}{\partial \phi}=r\sin \theta \dfrac{\partial (\cos \phi)}{\partial \phi}=r\sin \theta (-\sin \phi)=-r\sin \theta \sin \phi \),
\[ \dfrac{\partial x}{\partial \phi }=\dfrac{\partial (r\sin \theta \cos\phi)}{\partial \phi}=r\sin \theta \dfrac{\partial (\cos \phi)}{\partial \phi}=r\sin \theta (-\sin \phi)=-r\sin \theta \sin \phi \]
in the derivative with respect ϕ, the values ​​of r and θ are constant and the term at r and the sine are moved out of the derivative.

\( y=r\sin \theta \sin \phi \):

\( \dfrac{\partial y}{\partial r}=\dfrac{\partial (r\sin \theta\sin \phi)}{\partial r}=\sin \theta \sin \phi\dfrac{\partial r}{\partial r}=\sin \theta \sin \phi \times 1=\sin \theta \sin \phi \),
\[ \dfrac{\partial y}{\partial r}=\dfrac{\partial (r\sin \theta\sin \phi)}{\partial r}=\sin \theta \sin \phi\dfrac{\partial r}{\partial r}=\sin \theta \sin \phi \times 1=\sin \theta \sin \phi \]
in the derivative with respect to r, the values ​​of θ and ϕ are constant, and the sine terms are moved out of the derivative.

\( \dfrac{\partial y}{\partial \theta }=\dfrac{\partial (r\sin \theta\sin \phi)}{\partial \theta}=r\sin \phi \dfrac{\partial(\sin \theta)}{\partial \theta}=r\cos \theta \sin \phi \),
\[ \dfrac{\partial y}{\partial \theta }=\dfrac{\partial (r\sin \theta\sin \phi)}{\partial \theta}=r\sin \phi \dfrac{\partial(\sin \theta)}{\partial \theta}=r\cos \theta \sin \phi \]
in the derivative with respect to θ, the values ​​of r and ϕ are constant, and the term at r and the sine are moved out of the derivative.

\( \dfrac{\partial y}{\partial \phi}=\dfrac{\partial (r\sin \theta\sin \phi)}{\partial \phi}=r\sin \theta \dfrac{\partial(\sin \phi)}{\partial \phi }=r\sin \theta \cos \phi \),
\[ \dfrac{\partial y}{\partial \phi}=\dfrac{\partial (r\sin \theta\sin \phi)}{\partial \phi}=r\sin \theta \dfrac{\partial(\sin \phi)}{\partial \phi }=r\sin \theta \cos \phi \]
in the derivative with respect to ϕ, the values ​​of r e θ are constant, and the term at r and the sine are moved out of the derivative.

\( z=r\cos \theta \):

\( \dfrac{\partial z}{\partial r}=\dfrac{\partial (r\cos \theta )}{\partial r}=\cos \theta \dfrac{\partial r}{\partial r}=\cos \theta \times 1=\cos \theta \),
\[ \dfrac{\partial z}{\partial r}=\dfrac{\partial (r\cos \theta )}{\partial r}=\cos \theta \dfrac{\partial r}{\partial r}=\cos \theta \times 1=\cos \theta \]
in the derivative with respect to r, the value of θ is constant, and the cosine is moved out of the derivative.

\( \dfrac{\partial z}{\partial \theta}=\dfrac{\partial (r\cos \theta)}{\partial \theta}=r\dfrac{\partial (\cos \theta)}{\partial \theta}=r(-\sin \theta )=-r\sin \theta \),
\[ \dfrac{\partial z}{\partial \theta}=\dfrac{\partial (r\cos \theta)}{\partial \theta}=r\dfrac{\partial (\cos \theta)}{\partial \theta}=r(-\sin \theta )=-r\sin \theta \]
in the derivative with respect θ, the value of r is constant, and the term at r is moved out of the derivative.

\( \dfrac{\partial z}{\partial \phi}=\dfrac{\partial (r\cos \theta)}{\partial \phi}=0 \), the function z does not depend on ϕ, in the derivative with respect ϕ the values ​​of r e θ are constants, and the derivative of a constant is zero.
\[ dA=J\;d\theta \;d\phi \]
Note: There is no derivative in dr because the Gaussian Surface has a constant radius equal to r.
\[ J=\left| \begin{matrix} \;\sin \theta \cos \phi & r\cos \theta \cos\phi & -r\sin \theta \sin \phi \;\\ \;\sin \theta\sin \phi & r\cos \theta \sin \phi & r\sin \theta \cos\phi \;\\ \;\cos \theta &-r\sin \theta &0\; \end{matrix} \right| \]
computing the determinant using the Rule of Sarrus
\[ \begin{gather} J=(\sin \theta \cos \phi).(r\cos \theta\sin \phi).0+(r\cos \theta \cos \phi).(r\sin \theta \cos\phi).(\cos \theta) \text{+} \qquad\qquad\qquad\quad\\ \text{+}(-r\sin \theta \sin \phi).(\sin \theta \sin \phi).(-r\sin \theta)-(-r\sin \theta \sin \phi).(r\cos \theta \sin \phi).(\cos \theta) \text{--}\\ \text{--} (\sin \theta \cos \phi).(r\sin \theta \cos \phi).(-r\sin \theta)-(r\cos \theta\cos \phi).(\sin \theta \sin \phi).0 \qquad\qquad\quad \\{\,}\\ J=0+r^{2}\cos ^{2}\theta \sin \theta \cos ^{2}\phi+r^{2}\sin ^{3}\theta \sin ^{2}\phi +r^{2}\cos^{2}\theta\sin \theta \sin ^{2}\phi +r^{2}\sin ^{3}\theta \cos^{2}\phi -0 \\{\,}\\ J=r^{2}[\cos ^{2}\theta \sin \theta \cos ^{2}\phi+\sin ^{3}\theta \sin ^{2}\phi +\cos ^{2}\theta\sin \theta \sin ^{2}\phi +\sin ^{3}\theta \cos ^{2}\phi] \\{\,}\\ J=r^{2}[\cos ^{2}\theta \sin \theta \underbrace{(\cos^{2}\phi +\sin ^{2}\phi)}_{1}+\sin ^{3}\theta\underbrace{(\cos ^{2}\phi +\sin ^{2}\phi)}_{1}] \\{\,}\\ J=r^{2}[\cos ^{2}\theta \sin \theta+\sin ^{2}\theta \sin \theta ] \\{\,}\\ J=r^{2}[\underbrace{(\cos^{2}\theta +\sin ^{2}\theta)}_{1}\sin \theta] \\{\,}\\ J=r^{2}\sin \theta \end{gather} \]
\[ \begin{gather} dA=r^{2}\sin \theta \;d\theta \;d\phi \tag{VI} \end{gather} \]
substituting expression (VI) into expression (IV)
\[ \begin{gather} \int_{A}Er^{2}\sin \theta \;d\theta \;d\phi =\frac{q}{\epsilon_{0}} \tag{VII} \end{gather} \]
Since the electric field is uniform and the integral does not depend on the radius, they can be moved out of the integral, and the integrals can be separated.
\[ Er^{2}\int \sin \theta \;d\theta \int d\phi =\frac{q}{\epsilon_{0}} \]
The limits of integration will be from 0 to π in dθ, and from 0 and 2π in dϕ in one complete turn around the base of the hemisphere, (Figure 3-B)
\[ Er^{2}\int_{0}^{\pi}\sin \theta \;d\theta \int_{0}^{{2\pi}}d\phi =\frac{q}{\epsilon_{0}} \]
Figure 3

Integration of    \( \displaystyle \int_{0}^{\pi}\sin \theta \;d\theta \)
\[ \begin{split} \int_{0}^{\pi}\sin \theta \;d\theta &\Rightarrow \left.-\cos\theta \;\right|_{\;0}^{\;\pi }\Rightarrow -(\cos \pi -\cos0)\Rightarrow\\ &\Rightarrow -(-1-1)\Rightarrow -(-2)= 2 \end{split} \]

Integration of    \( \displaystyle \int_{0}^{2\pi}\;d\phi \)
\[ \int_{0}^{2\pi}\;d\phi \Rightarrow\left.\phi \;\right|_{\;0}^{\;2\pi}\Rightarrow2\pi-0=2\pi \]
\[ Er^{2}\times 2\times 2\pi =\frac{q}{\epsilon_{0}} \]
\[ \bbox[#FFCCCC,10px] {E=\frac{q}{4\pi \epsilon_{0}r^{2}}} \]
advertisement