Solved Problem on Mesh Analysis
advertisement   



Two batteries whose emf and internal resistances are respectively E1=1.5 V, E2=9 V, and r1=1 Ω, r2=2.2 Ω are connected by wires of negligible resistance to a resistor R=4.7 kΩ. Find the currents in the branches of the circuit.



Problem data:

Batteries internal resistances:
  • r1 = 1 Ω;
  • r2 = 2.2 Ω;
External resistance:
  • R = 4.7 kΩ = 4700 Ω;
emf of the batteries:
  • E1 = 1.5 V;
  • E2 = 9 V;
Solution

First, at each circuit loop, we arbitrarily assign a direction of the current. In the ABEFA loop, we have the current i1 clockwise, and in the BCDEB loop, we have the current i2 counterclockwise (Figure 1).

Figure 1

Using the Mesh Analysis to the mesh i1, from point A in the chosen direction, forgetting the mesh i2 (Figure 2)
\[ \begin{gather} \bbox[#99CCFF,10px] {\sum_{n} V_{n}=0} \end{gather} \]
\[ \begin{gather} R(i_{1}+i_{2})+r_{1}i_{1}-E_{1}=0 \end{gather} \]
Figure 2

substituting the values of the problem
\[ \begin{gather} 4700(i_{1}+i_{2})+1i_{1}-1.5=0\\[5pt] 4700i_{1}+4700i_{2}+i_{1}=1.5 \\[5pt] {4701i_{1}+4700i_{2}=1.5 \tag{I}} \end{gather} \]
Forgetting the mesh i1 and using the Mesh Analysis to the mesh i2, as was done above, we have for Figure 3, from point B
\[ \begin{gather} R(i_{1}+i_{2})+r_{2}i_{2}-E_{2}=0 \end{gather} \]
Figure 3

substituting the values of the problem
\[ \begin{gather} 4700(i_{1}+i_{2})+2.2i_{2}-9=0\\[5pt] 4700i_{1}+4700i_{2}+2.2i_{2}=9\\[5pt] {4700i_{1}+4702.2i_{2}=9 \tag{II}} \end{gather} \]
Equations (I) and (II) can be written as a system of linear equations with two unknowns (i1 and i2)
\[ \left\{ \begin{array}{l} \;4701i_{1}+4700i_{2}=1.5\\ \;4700i_{1}+4702.2i_{2}=9 \end{array} \right. \]
solving the first equation for i2
\[ \begin{gather} i_{2}=\frac{1.5-4701i_{1}}{4700} \tag{III} \end{gather} \]
substituting this value in the second equation
\[ \begin{gather} 4700i_{1}+4702.2 \times \left(\;\frac{1.5-4701i_{1}}{4700}\;\right)=9 \end{gather} \]
multiplying both sides of the equation by 4700
\[ \begin{gather} 4700 \times 4700i_{1}+4700 \times 4702.2 \times \left(\;\frac{1.5-4701i_{1}}{4700}\;\right)=4700 \times 9\\[5pt] 22090000i_{1}+\cancel{{4700}} \times 4702.2 \times \left(\;\frac{1.5-4701i_{1}}{\cancel{{4700}}}\;\right)=4700 \times 9\\[5pt] 22090000i_{1}+4702.2 \times 1.5-4702.2 \times 4701i_{1}=42300\\[5pt] 22090000i_{1}+7053.3-2210542.2i_{1}=42300\\[5pt] -15042.2i_{1}=42300-7053.3\\[5pt] -15042.2i_{1}=35246.7\\[5pt] i_{1}=\frac{35246.7}{-15042.2}\\[5pt] i_{1}=-2.34319\;\text{A} \end{gather} \]
Substituting this value into expression (III)
\[ \begin{gather} i_{2}=\frac{1.5-4701 \times (\;-2.34319\;)}{4700}\\[5pt] i_{2}=\frac{1.5+11015.33619}{4700}\\[5pt] i_{2}=\frac{11016.83619}{4700}\\[5pt] i_{2}=2.34401\;\text{A} \end{gather} \]
In the branch BE the current i3 is
\[ \begin{gather} i_{3}=i_{1}+i_{2}\\[5pt] i_{3}=-2.34319+2.34401\\[5pt] i_{3}=0.00082=0.82.10^{-3}=0.82\;\text{mA} \end{gather} \]
The direction of the current i3 will be the same as the current i2 (the highest value).
Since the value of current i2 is negative, this means that its real direction is opposite to that chosen in Figure 1. The current values are i1=2.3432 A, i2=2.3440 A, and i3=0.82 mA, and their directions are shown in Figure 4.

Figure 4
advertisement