Solved Problem on Kirchhoff's Laws
advertisement   



Two batteries whose emf and internal resistances are respectively E1=1.5 V, E2=9 V, and r1=1 Ω, r2=2.2 Ω are connected by wires of negligible resistance to a resistor R=4.7 kΩ. Find the currents in the branches of the circuit.



Problem data:

Batteries internal resistances:
  • r1 = 1 Ω;
  • r2 = 2.2 Ω;
External resistance:
  • R=4.7 kΩ = 4700 Ω;
emf of the batteries:
  • E1 = 1.5 V;
  • E2 = 9 V;
Solution

First, to each branch of the circuit, we arbitrarily choose a direction of the current. In the EFAB branch we have the current i1 clockwise, in the branch BE the current i3 from B to E and in the branch EDCB the current i2 in the counterclockwise direction. Second, for each loop of the circuit, we assign a direction, also arbitrarily, to traverse the mesh. The α-mesh (ABEFA) clockwise and β-mesh (BCDEB) also clockwise. We see all these elements in Figure 1.

Figure 1
  • Using Kirchhoff's First Law
\[ \begin{gather} \bbox[#99CCFF,10px] {\sum_{n} i_{n}=0} \end{gather} \]
The currents i1 and i2 flow into node B and the current i3 flows out
\[ \begin{gather} i_{3}=i_{1}+i_{2} \tag{I} \end{gather} \]
  • Using Kirchhoff's Second Law
\[ \begin{gather} \bbox[#99CCFF,10px] {\sum_{n} V_{n}=0} \end{gather} \]
For the α-mesh from point A, in the chosen direction, forgetting the β-mesh (Figure 2)
\[ \begin{gather} R i_{3}+r_{1} i_{1}-E_{1}=0 \tag{II} \end{gather} \]
Figure 2

substituting the values of the problem
\[ \begin{gather} 4700i_{3}+1i_{1}-1.5=0\\[5pt] 4700i_{3}+i_{1}=1.5 \tag{III} \end{gather} \]
For the β-mesh from point B, in the chosen direction, forgetting the α-mesh, (Figure 3)

Figure 3
\[ \begin{gather} E_{2}-r_{2}i_{2}-Ri_{3}=0 \tag{IV} \end{gather} \]
substituting the values
\[ \begin{gather} 9-2.2i_{2}-4700i_{3}=0\\[5pt] 2.2i_{2}+4700i_{3}=9 \tag{V} \end{gather} \]
Equations (I), (III) and (V) can be written as a system of linear equations with three variables (i1, i2, and i3)
\[ \left\{ \begin{array}{l} \;i_{3}=i_{1}+i_{2}\\ \;4700i_{3}+i_{1}=1.5\\ \;2.2i_{2}+4700i_{3}=9 \end{array} \right. \]
solving the second equation for i1
\[ \begin{gather} i_{1}=1.5-4700i_{3} \tag{VI} \end{gather} \]
solving the third equation for i2
\[ \begin{gather} i_{2}=\frac{9-4700i_{3}}{2.2} \tag{VII} \end{gather} \]
substituting expressions (VI) and (VII) in the first equation
\[ \begin{gather} i_{3}=1.5-4700i_{3}+\frac{9-4700i_{3}}{2.2} \end{gather} \]
multiplying both sides of equality by 2.2
\[ \begin{gather} 2.2i_{3}=2.2 \times \left(\;1.5-4700i_{3}+\frac{9-4700i_{3}}{2.2}\;\right)\\[5pt] 2.2i_{3}=2.2 \times 1.5-2.2 \times 4700i_{3}+{\cancel{2.2}} \times \frac{9-4700i_{3}}{\cancel{2.2}}\\[5pt] 2.2i_{3}=3.3-10340i_{3}+9-4700i_{3}\\[5pt] 2.2i_{3}=12.3-15040i_{3}\\[5pt] 2.2i_{3}+15040i_{3}=12.3\\[5pt] 15042.2i_{3}=12.3\\[5pt] i_{3}=\frac{12.3}{15042.2}\\[5pt] i_{3}=8.1770 \times 10^{-4}=0.81770 \times 10^{-3}\simeq 0.82\;\text{mA} \end{gather} \]
substituting the value found above in expressions (VI) and (VII) we find i1 and i2 respectively
\[ \begin{gather} i_{1}=1.5-4700 \times 0.00081770\\[5pt] i_{1}=1.5-3.8432\\[5pt] i_{1}=-2.3432\;\text{A} \end{gather} \]

\[ \begin{gather} i_{2}=\frac{9-4700 \times 0.00081770}{2.2}\\[5pt] i_{2}=\frac{9-3.8432}{2.2}\\[5pt] i_{2}=\frac{5.1568}{2.2}\\[5pt] i_{2}=2.3440\;\text{A} \end{gather} \]
Since the value of current i1 is negative, this means that its true direction is opposite to that chosen in Figure 1. The currents values are i1=2.3432 A, i2=2.3440 A, and i3=0.82 mA, and its directions are shown in Figure 4.

Figure 4
advertisement